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1. INTRODUCTION 
 
 The “Monte Carlo Method,” also known as the “Method of Statistical Trials,” is a 
statistical method for solving deterministic or probabilistic problems across the scientific 
and engineering disciplines. 
 It is generally applied in two steps.  First, the solution of a problem is represented 
as a parameter of a hypothetical population.  Second, a random sequence of numbers is 
used to construct a sample of the population, from which statistical estimates of the 
needed parameters can be obtained. 
 It can be considered as a method of solving various problems in computational 
mathematics by constructing for each problem a random process with parameters equal to 
the required quantities of the initial problem.  The unknowns are determined by carrying 
out observations on the constructed random process, and by computing its statistical 
characteristics, which would be equal to the required parameters of the initial process. 
 More simply stated, it is a numerical method for solving mathematical problems 
by means of random sampling.  
 In even simpler terms, it is a physics experiment carried out numerically on a 
computing platform, rather than in the laboratory or the real world. 
 Several excellent publications have been published about the method.  These 
include a monograph by Hammersley and Handscomb, a report by Kahn, a review by 
Halton, and the books by Shreider, Sobol, Spanier and Gelbard, and by Carter and 
Cashwell. 
 
2. HISTORICAL ORIGINS 
 
 The Monte Carlo method can be traced back to Pharaonic, Babylonian and Old 
Testament times. Mention should be made of early ideas due to Laplace in 1812, Lord 
Raleigh in 1899, Student in 1908, Courant, Friedrichs, and Lewy in 1928, Kolmogorov in 
1931, and Pólya in 1938. 
 The method has its basis in probability theory, whose larger strides were started in 
the 16th century.  Engineers and scientists have discovered that the laws governing 
randomness can describe the real world. Probability theory dates back to Gerolamo 
Cardano (1501-1576), who wrote in 1526 “The Book of Games of Chance,” or “Liber de 
Ludo Aleae.”  Cardano, famous for his cubic equation, was a mathematician, engineer, 
physician, as well as a gambler. Probability theory was developed by Jacques Bernoulli I 
(1654-1705), Pascal, De Moivre, Euler, Laplace, Gauss, and Poisson(1781-1840).  A 
large number of mathematicians developed it further in the 19th and 20th centuries. 
 Lord Raleigh in 1899 showed that a one dimensional random walk without an 
absorbing barrier can provide a solution to a parabolic differential equation. A. N. 
Kolmogorov (1903-1987) showed in 1931 the relationship between Markov chains 



stochastic processes and the solution to some integro-differential equations.  William 
Sealy Gosset 91876-1937), better known as Student, in 1908 used experimental sampling 
to help him in the discovery of the distribution of correlation coefficient, as well as 
checking his earlier derivation of his famous t-distribution. 
 The systematic use of the method, and its name, date back to the 1940s period of 
the Los Alamos School of mathematicians and physicists, and especially to the work of 
von Neumann (1903-1957), Ulam, Metropolis, Fermi, Kahn, and Richtmyer. 
 The expression “Monte Carlo Method,” was first used in 1946 at the Los Alamos 
National Laboratory in New Mexico, USA.  It was applied to a computational program 
developed by John von Neumann along lines suggested by Stanislav Ulam, in which a 
neutron chain reaction is simulated on a digital computer, with the aid of random 
numbers, and the simulated reaction then studied by standard statistical methods.  At this 
time von Neumann and Ulam introduced variance reduction methods such as the 
“splitting method” and “Russian roulette”. 
 The problem during World War II pertained to how far would neutrons travel in 
different materials, and had a vital bearing on shielding and the calculation of critical 
masses.  To explore the problem by experimental trial and error would have been quite 
expensive, time consuming and outright hazardous.  The problem also seemed beyond the 
reach of theoretical calculations.  The physicists knew, however most of the basic data, 
such as the average distances or mean free paths that a neutron of a given speed or energy 
would travel in a given material before it collided with an atomic nucleus.  They also 
knew the probabilities of neutron scattering, absorption, and fission, as well as the energy 
loss of the neutrons after each collision. It was impossible to sum up this information into 
a practical formula for predicting the outcome of a whole sequence of neutron interaction 
events. von Neumann and Ulam approached the problem by sampling the probabilities of 
the process step by step.  The separate events were merged into a composite picture, 
which gave a workable answer to the problem.  This mathematical technique was known 
for years. When it was revived for the work at Los Alamos, von Neumann gave it the 
code name of “Monte Carlo.” 

After the war the same type of computations were used in the “Super” program, 
or the construction of thermonuclear or hydrogen weapons devices.  The calculations 
were carried out by von Neumann, at Princeton University, on the MANIAC computer 
and a duplicate version of it built at Los Alamos under the supervision of Metropolis. 
Ulam and Everett had already carried out computations on probability questions 
connected with the active assemblies of uranium and with neutron multiplications.  The 
preferred name now and then is “branching processes,” initially developed by David 
Hawkins. Edward Teller needed information about the progress of a thermonuclear 
reaction or burning in a mass of deuterium, or a deuterium and tritium mixture.  There 
were several proposals of ideas on how to initiate a thermonuclear reaction, using fission 
devices as starters.  An idea due to Gamow was called “the cat’s tail,” another was due to 
Teller designated as “ the womb idea,” and another due to Ulam designated as the “the 
spittoon idea.”  The work was involving the guessing of geometrical factors, intersections 
of solids, estimation of volumes, and estimation of the chances of points escaping.  This 
gave doubts as to the possibility of success of the scheme suggested by Teller for the 
Super.  The geometry of the moving actual assembly had to be accounted for, as well as 
the fate of the neutrons and other particles moving through it and causing in turn more 



reactions.  These estimates had to be interspersed by stepwise calculations of the behavior 
of the actual hydrodynamic motions.  The real times for the individual computational 
steps were short, each less than a “shake,” where: 
 
    1 shake = 10-8 [second]. 
 
The spatial subdivisions of the material assemblies very small in linear dimensions, in the 
order of barns, where: 
 
    1 barn = 10-24 [cm2]. 
 
 These early coupled Monte Carlo and Hydrodynamics calculations, necessitated 
the use of the MANIAC computer and its replica.  The simulations results showed that 
the Teller’s configuration initially flared up, but then the whole assembly started to 
slowly cool down.  
 Ulam thought of a way to modify the whole approach by injecting a repetition of 
certain arrangements, which became known as the Ulam-Teller configuration.  This 
breakthrough allowed the computer design of the first thermonuclear test and it’s 
successful testing in the Pacific as the Mike test.  This idea or set of ideas is still shrouded 
with secrecy and classification issues. 
 Owing to the secrecy surrounding the Super program, the exact character of that 
early work was not made known generally, and much confusion arose as to what Monte 
Carlo really was.  When the general idea was explained, the statisticians suggested that 
this was nothing but an established statistical method called Model Sampling, which they 
have been doing for years.  Ulam and von Neumann did not claim to have invented 
Model Sampling, but the essence of their contribution was: 

1. The application of model sampling to neutron chain reactions. 
2. The idea of doing the whole job on a digital computer. 
3. The generation of the random numbers in the computer itself. 
In fact, computers were invented and constructed to carry out such computations, so 

that modern day computers can be considered as a technological spin-off from the need to 
simulate chain reactions.  

Harris and Herman Kahn systematically developed the method around 1948.  At this 
time, Fermi, Metropolis and Ulam estimated by Monte Carlo the eigenvalues of the 
Shroedinger’s equation. 
 Around 1970, the theory of computational complexity provided a more precise 
rationale for the use of the Monte Carlo method.  It identified a class of problems for 
which the time to evaluate the exact solution to a problem within the class grows at least 
exponentially with the system dimension n.  The question was whether the Monte Carlo 
method could estimate the solution to a problem in this intractable class to within a 
specified statistical accuracy in time bounded above by a polynomial in n-dimensional 
space.  Many examples now support the ability of Monte Carlo to deal with these 
problems.  For instance, Karp in 1985 shows this property by estimating the reliability in 
a planar multiterminal network with randomly failing edges, and Dryer in 1989 
established it for the estimation of the volume of a convex body in an n-dimensional 
Euclidean space.  In 1986 Broder and Jerrum and in 1988 Sinclair established this 



property in estimating the permanent of a matrix which is equivalent to the number of 
perfect matchings in a bipartite graph. 
 
3. MONTE CARLO PROBLEM FORMULATION 
 
 The use of the Monte Carlo method is one of the best examples of the creative use 
of computers as a research tool.  It draws on an extremely broad range of mathematical 
disciplines from probability theory to number theory, and from mathematical analysis to 
numerical analysis. 
 The Monte Carlo method depends on the use of probability theory to solve several 
categories of problems: 

1. Problems that depend in their formulation in some way on probabilistic and 
random behavior. 

2. Situations where physical experiments are impractical or too expensive.  
3. Problems where an exact formula is difficult or impossible to derive using other 

known techniques. 
4. Processes that consist of a long sequence of steps, each involving a probabilistic 

relation. 
However, it is fundamentally different from probability theory.  In probability theory, 

equations are derived from theoretical considerations based on randomness.  In Monte 
Carlo theory, probabilistic concepts are used to find an answer to a physical problem that 
often has no relation to probability or randomness. 

In a typical situation of a Monte Carlo problem formulation, designated as Direct 
Simulation Monte Carlo (DSMC): 

1. The investigator has at hand a physical situation that he wants to study. 
2. He cannot build an experiment to study the problem at hand. 
3. He does not think he will even try to derive an equation describing the whole 

problem. 
4. Even if he derives an equation, which is sometimes doubtful, not much 

information can be obtained from it. 
5. He tries to identify a random process, which will give the same answers to his 

original situation, without having to derive an analytical solution. 
6. He simulates the random process on a computer, and estimates on it the 

parameters of his original solution. 
Consider the simple problem of neutron diffusion where a beam of neutrons impinges 

on a water tank.  We need to calculate the fraction of neutrons getting through the tank 
without being absorbed or losing most of their energy.  No formula could describe 
precisely the fate of all the neutrons.  A Monte Carlo procedure would trace the life 
histories of a large sample of neutrons in the beam and their interaction with the water 
molecules and their hydrogen and oxygen constituents.  The procedure would sample the 
source of neutrons and establish the fist collision points in the tank.  At each collision 
point, a decision is reached whether the particle has scattered, was absorbed or leaked 
from the system.  If the particle was absorbed or leaked, a new particle is sampled from 
the source and its history is followed.  If the particle has scattered, its energy loss is 
estimated and a new direction for its scattering is determined, then the position of its next 
interaction is determined.  As the process is repeated, it creates a statistical population of 



neutrons in the tank that allows us to estimate its parameters, including the fraction 
leaking. 

In an alternate situation that we can identify as Mathematical Monte Carlo Simulation 
(MMCS): 

1. The physical situation under study has resulted in a mathematical equation, which 
due perhaps to multidimensionality, nonlinearity and complexity is very difficult 
or impossible to solve. 

2. It cannot be solved by other methods without introducing drastic simplifications. 
3. It cannot be solved in any reasonable amount of time using known techniques. 
4. A probabilistic method, which would solve the mathematical equation and would 

yield a similar answer to the initial problem is sought, and simulated on a 
computer. 

 
4. PARAMETER ESTIMATION 
 
 In Monte Carlo simulations, statistical estimates are sought for the quantities of 
interest. The estimates are obtained by the repetitive playing of a probabilistic game.  The 
game played is in the simplest case, but not necessarily so, an analog of the physical 
process of interest.  The game is specified by a set of deterministic rules related to, and 
sets of probabilities governing the occurrences of the physical phenomena of interest. 
 Two distinctive features characterize the Monte Carlo method: 

1. The simple structure of the computational algorithm, which simply involves the 
repetition of a numerical experiment for N times, then calculating mean values µ 
or mathematical expectations over the experiments. 

2. A major advantage of the Monte Carlo methods is that the mean values of the 
quantities are associated with statistical error estimates. The absolute error can be 
calculated and it satisfies the proportionality relation: 

 

N
σε α      (1) 

where σ is the square root of the variance or standard deviation of the sample 
process, and N is the number of conducted experiments. 

 Equation 1 suggests that reduced error bounds and a higher confidence in the 
obtained result can be obtained by increasing the number of experiments N in the 
denominator, or by decreasing the variance σ2 of the statistical sampling process. 
 
5. MONTE CARLO DECISION SUPPORT AND FORECASTING 
 
 Monte Carlo offers a future solution of what Sam Savage from Princeton calls the 
“Flaw of Averages” problem in Decision Support systems and forecasting.  Mean values 
that are used in todays decision support systems and forecasting can be very misleading.  
What engineers, scientists and economists have considered as exact until fairly recently 
are now recognized as mere mean values.  In the real world and nature, the laws of 
probability and possibility theories prevail.  

Even when given good data, people make bad decisions.  They misunderstand, 
misinterpret and mismanage important problems.  The cause is that our thought processes 



have bugs in them.  To fix those bugs, decision support software latest incarnation 
generates thousands of scenarios covering real world contingencies.  Software products 
such as XL Sim and @risk allow people to test their assumptions through random 
sampling and Monte Carlo simulations, turning spreadsheets into wind tunnels for testing 
hypotheses and designing good decisions. 
 To test their intuitive assumptions about average returns and average losses, 
executives managing plant capacity, investors with stock portfolios, employees with 
retirements funds, would be running spreadsheet Monte Carlo simulations. 
 
6. MONTE CARLO PERVASIVE COMPUTING 
 

The Flaw of Averages also applies to Pervasive Computing.  This is a future 
where computers are no more residing on a desktop or at a computer center, but are 
imbedded in the environment including workplaces, transportation means, and even 
clothing.  For instance, a computer could control the temperature of clothing depending 
on the ambient environment.  A computer could adjust the settings of light, 
communications gear, and climate control in an office, car or plane, depending on the 
present user of the facility. 
 At the MIT Sloan School of Management, Dan Ariely is investigating an 
“electronic wallet.”  It would advise a user on, for instance, how to spend their money.  
Such a device would run a Monte Carlo simulation displaying how, based on a person’s 
payment behavior, he would save a sum of $200 over the next few months by using one 
credit card or the other, check, or cash. 
 According to Michael Schrage: “… tomorrow’s technologies will load the dice in 
favor of people not repeating the sort of silly statistical mistakes that lead to Nobel Prize 
winning research.  And that will merit a prize of its own.” 


