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1. INTRODUCTION 
 

The treatment of multidimensional systems, other than the spherical geometry, is 
an important topic since reactor systems normally have a finite cylinder geometry. Two 
approaches are possible: numerical methods, and in the simplest case, the separation of 
variables method can be used for homogeneous systems. We start with a mathematical 
introduction on orthogonal and orthonormal functions. The method of separation of 
variables is then used to study the criticality and the flux distribution for the 
parallelepiped reactor geometry; of which the cube is a special case, and the finite 
cylinder reactor core which is the geometrical configuration of most existing nuclear 
power reactors. The treatment will cover the case of multiplying media. The minimum 
volume for a critical assembly and the peak to average flux ratio will be derived. 
 
2. ORTHOGONAL AND ORTHONORMAL FUNCTIONS 
 

Two functions )(xmϕ and )(xnϕ are said to be orthogonal over an interval [a,b] if 

the integral of the product nmϕϕ over that interval vanishes: 
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In a more general sense, the functions )(xmϕ and )(xnϕ are said to be orthogonal 

with respect to a weighting function r(x), over an interval [a, b], if: 
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A set of functions is said to be orthogonal in [a, b] if all pairs of distinct functions 

in the set are orthogonal in [a, b] 
As an application, the one dimensional problem: 
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with the boundary conditions: X(0) = X(a) = 0, has the eigenvalues or characteristic 
values: 
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with corresponding characteristic functions or eigenfunctions: 
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Since in this case r(x) = 1, there follows: 
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when m and n are positive integers. 

The weighted integral of the square of a characteristic function )(xnϕ : 
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has a positive numerical value. 

If the arbitrary multiplicative factor involved in the definition of )(xnϕ  is so 

chosen that this integral has the value unity, the function )(xnϕ  is said to be normalized 
with respect to the weighting function r(x). 

A set of normalized orthogonal functions is said to be orthonormal. 
By direct integration of the previous equation, we get: 
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Thus in order to normalize the functions )sin(
a

xnπ over the interval [0, a], we 

would divide them by the normalizing factor: 
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The set of functions: 
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is thus an orthonormal set in the interval [0,a]. 
 
3. THE UNREFLECTED REACTOR PARALLELEPIPED CORE 
 

This is the simplest possible model of a reactor, where a reflector is not used.  
Consider the geometry of Fig. 1, where the coordinate axes are centered at the origin, and 
the extrapolated dimensions in the x, y, and z directions are 2a’, 2b’ and 2c’ respectively. 

The equation to be solved is the eigenvalue equation: 
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 The boundary conditions are: 
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 We can use the separation of variables method to solve the partial differential 
equation, by assuming: 
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 Substitution into Eq.1 yields: 
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 We should replace the partial derivatives by total derivatives.  Dividing by XYZ, 
yields: 
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 Each term must be separately equal to a constant if it is to hold for all allowed 
values of x, y, z.  This results in three ordinary rather than partial differential equations: 
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with the condition: 
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Figure 1.  Unreflected or bare parallelepiped reactor core. 
 
 Considering the first ordinary second order differential equation in x: 
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it is known to have the solution: 
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 The boundary condition: ( ') 0X a± = requires: 
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since we are not interested in the trivial solution A = C = 0, this can be satisfied if: 
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or by: 
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The even and odd solutions can be taken as members of the normalized set: 
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 Similarly for the y and z cases: 
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 The geometrical buckling is the sum of the 2

)(npqgB given by Eqns. 7, 9, 12 and 14: 
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 The corresponding solution is: 
 
    ( , , ) ( ) ( ) ( )npq n p qx y z X x Y y Z zϕ =    (16) 
 
 The only choice of n, p, and q which gives a nonnegative flux over the whole core 
is: 
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 Thus for a solution we use: 
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since 2

gB  is fixed by the medium.  
Thus there are many choices of the dimensions of the medium to reach criticality, 

but these dimensions much satisfy the condition 17. 
The solution for the critical system becomes from Eqs. 16, 10, 11 and 13: 
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4. THE MINIMUM VOLUME OF THE CRITICAL PARALLELEPIPED 
 

Let us minimize the volume of the parallelepiped: 
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subject to the condition (17). 
 To introduce the constraint, let us solve for one of the dimensions in terms of Bg 
and the other two dimensions: 
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where: d is the extrapolation distance. 
 On substitution for ‘a’ into the expression for V we get: 
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 The minimization proceeds by setting: 
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 These two equations yield by using Eqn. 20: 
 

    3
3 )(

)(
da

db
ba +
+

=  

 

    3
3 )(

)(
da

dc
ca +
+

=      (22) 

 
 On equating these two expressions for a: 
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This implies that: 
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If we would have started by eliminating b instead of a, we would have obtained a 
= c, thus: 
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Thus the critical parallelepiped with minimum volume is found to be a cube with: 
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5. THE PEAK TO AVERAGE FLUX RATIO 
 

This is an important quantity for heat transfer and fuel management design 
considerations.  This ratio should be as small as possible in order to make the heat 
generation and the fuel burnup as uniform as possible.  Otherwise, larger cooling ducts or 
orificing must be used in the central parts of the reactor core, and shorter refueling and 
fuel shuffling times will ensue. 

The average flux is given by: 
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The maximum flux is: 
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If d is small, thus aa ≈' , bb ≈' , cc ≈'  and Eqn. 27 becomes 
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a quantity that is independent of the values of a, b, and c. 
 
6. THE FINITE HEIGHT CYLINDRICAL CORE 
 

This is the geometry adopted by most reactor nuclear power plants. In this case 
the equation to be solved is: 
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Assuming a separable solution of the form: 
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Each term must be a constant, thus: 
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With the constraint: 
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The equation for Z(z), (Eqn. 33), has a solution: 
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At the extrapolated height of the cylinder, 
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Because of symmetry around z = 0, the terms with C are ruled out, thus C = 0, and  
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Figure 2.  The unreflected finite height cylindrical reactor core. 
 
or: 
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The equation for R is: 
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which is a Bessel Equation of order zero.  



 This equation derives its name from the German mathematician and astronomer 
Frederich Bessel (1784-1846) who reported it while studying planetary motions.  In 
modern engineering practice, it is encountered whenever cylindrical geometry arises in 
engineering analysis. 
 The general form of the Bessel Equation of order n, which is a variable coefficient 
equation is: 
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where n is a constant. 
 This has a general solution: 
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where:  E, F are constants of integration to be determined by the boundary conditions, 
 )(xJ n  is the Bessel function of the first kind of order n, 

)(xYn  is the Bessel function of the second kind of order n, also designated as the 
Neumann function. 
If x is replaced by jx where j = 1− , Bessel’s Equation modifies into the form: 
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This in turn has a general solution: 
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where:  E’, F’ are constants of integration to be determined by the boundary conditions, 
 )(xI n  is the modified Bessel function of the first kind of order n, 

)(xKn  is the modified Bessel function of the second kind of order n. 
 
 The four Bessel functions of zero order are shown in Fig. 3, and are compared to 
the cos (x) function.  

It can be noticed that both )(0 xJ  and )(0 xY  are oscillatory.  The distance between 
the roots, or the values at which the functions have a value of zero when they cross the x-
axis, become larger and approach the value of π  as x increases.  The amplitudes of these 
two functions decrease as x increases, and they are bounded and not infinite everywhere 
except for )(0 xY  at x = 0, which reaches - ∞ .   

It is of interest to note that the first root or zero of the function J0 occurs at x = 
2.405. 

The two functions, )(0 xI  and xK (0 ) are non-oscillatory and unbounded, the 
former going to ∞  at x = ∞ , and the latter at x = 0. 



 

 
 

Figure 3.  Bessel functions of zero order compared with the cosine function. 
 

The general solution of Eqn. 39 in terms of the Bessel functions of the first and 
second kind of zero-th order is: 
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For the flux to be finite, F = 0, and: 
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For the flux to vanish at the extrapolated boundary, 0)'(0 =aEJ γ , we must have: 
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where: poj ,  is the argument at which 0J becomes zero at the p-th time.  

For the flux to remain positive we only take p = 1, and 405.2, =poj .  Thus: 
 

   
'

405.2
a

=γ  

 
and: 

)
'

405.2()( 0 a
rEJrR =       (42) 

 
Choosing also n = 1 in Eq.38, we get the solution: 
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where: maxϕ is the flux at the origin. 

The criticality condition is: 
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The average flux is given by: 
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and for aa ≈' , hh ≈' , it becomes: 
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Table 1.  Geometrical Buckling and flux distribution in different nuclear reactor core 
geometries. 

 
Reactor core 

shape Geometric buckling Flux distribution 
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7. CRITICALITY OF CYLINDRICAL PRESSURIZED WATER 
REACTOR (PWR) CORE 
 

We consider a bare homogenous cylindrical core with material composition 
typical of a modern Pressurized Water Reactor (PWR) operating at full power conditions.   

The reactor contains a concentration of 2.21 ppb of natural boron as boric acid 
dissolved in the coolant water and is fuelled with UO2 at 2.78 percent enrichment in U235.   

Based on thermal design considerations, the core height is fixed at H = 3.7 meters. 
The macroscopic cross sections for the materials composing this core are as 

shown in Table 2. 
 
 
 
 



Table 2. Macroscopic cross sections data for a PWR core. 
 

Element/Isotope 
Transport Cross 
section, [cm-1] 

Σtr 

Absorption Cross 
section, [cm-1] 

Σa 

Product of average 
number of neutrons 

released in fission and 
Fission Cross section, 

[neutron . cm-1] 
νΣf 

H 1.79x10-2 8.08x10-3 - 
O 7.16x10-3 4.90x10-6 - 
Zr 2.91x10-3 7.01x10-4 - 
Fe 9.46x10-4 3.99x10-3 - 

U235 3.08x10-4 9.24x10-2 1.45x10-1 
U238 6.95x10-3 1.39x10-2 1.20x10-2 
B10 8.77x10-6 3.41x10-2 - 

 
We calculate the parameters that are characteristic of a PWR core using the one-

group diffusion theory model. 
From the table, the summation of the total macroscopic cross sections for the 

whole homogenized core are; 
 

    

1

1

1

0.03618
0.1532

0.157 .

tr

a

f

cm
cm
n cmν

−

−

−

Σ =

Σ =

Σ =

 

The diffusion coefficient is: 
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The infinite medium multiplication factor becomes: 
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The diffusion area and the diffusion length are: 
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The material buckling is given by: 
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The extrapolation distance is: 
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The axial geometrical buckling is thus: 
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 By equating the geometrical buckling to the material buckling as a condition of 
criticality we obtain the value of the radial geometrical buckling: 
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We can thus deduce the value of the critical extrapolated radius as: 
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There results that the critical radius of the core is: 
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We can compute the critical core volume as: 
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 One can also estimate the neutrons leakage fraction from the critical core as: 
 



 

2 2 4

1 11 1 1
1 1 60.137 4.124 10

1 11 1 1 0.976
1 0.0248 1.0248

0.024 2.4

LP
L B x

percent

−= − = − = −
+ + ×

= − = − = −
+

= =


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EXERCISES 
 
1. Consider a cubical bare reactor of edge dimensions a = b = c, as a special case of the 
rectangular parallelepiped reactor core. 
Use separation of variables to solve from first principles for the neutron flux in the 
reactor as a function of position, and derive an expression for the geometric buckling. 
 
2. Consider a cylindrical bare reactor of unit height to diameter ratio: H = 2R, where H is 
its height and R is its radius, as a special case of the finite cylindrical reactor core. 
Use separation of variables to solve from first principles for the neutron flux in the 
reactor as a function of position, and derive an expression for the geometric buckling. 
 
3. Choose a different critical core configuration with a unity height to diameter ratio and 
with the same material compositions, and recalculate the reactor parameters for the 
typical PWR core.  Discuss your results. 
 
4. For:  
a) A spherical reactor core with R = 20 cm,  
b) A cubical reactor core with a = 40 cm, and  
c) A cylindrical reactor core with H = 2R = 40 cm, 
containing a mixture of U235 as fuel and graphite as a moderator, compare the  moderator 
to fuel ratios : S = Ng / Nu that will achieve criticality for each configuration. 
Use: ρ(graphite)=1.6 g/cm3, microscopic absorption cross-section of graphite σa = 3.4x10-

3 b, microscopic absorption cross-section of U235=681 b, ν = 2.07, D = 0.85 cm. 
 
5. Compare the critical masses of fast reactors composed of U235 in the following 
geometrical shapes: 
a) A spherical reactor core. 
b) A cubical reactor core.  
c) A cylindrical reactor core with H = 2R. 



Use: 
microscopic transport cross section = 8.246 [barns] 
microscopic absorption cross section = 2.844 [barns] 
density = 18.75 [gm/cm3] 
product of average number of neutrons released in fission (ν) and the microscopic fission 
cross section = 5.297 [neutrons.barn]. 
 
6. Using the one group steady state neutron diffusion equation and ignoring the 
extrapolation lengths, derive the expression for the flux distribution in a finite height 
cylindrical reactor core of radius R and height H as shown in Fig. 1. 
Apply the appropriate boundary conditions and derive the expression for the geometrical 
buckling for such a reactor core. 
By equating the geometrical buckling to the material buckling, derive the one group 
criticality equation for the finite height cylindrical core. 
Generalize the one group criticality equation to a two group formulation including a fast 
neutrons group with Fermi age τ and a thermal group with diffusion area L2. 
For a large reactor deduce the modified one group criticality equation in terms of the 
migration area M2 = τ + L2. 
 

 
 

Figure 1.  Finite cylindrical core of height H and radius R. 
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Figure 2.  Lattice configuration and the unit cell of the natural uranium rods in the D2O 
moderator. 

 
Consider a D2O cooled and moderated reactor containing 2.54 cm diameter vertical rods 
of natural uranium arranged in a square lattice configuration with pitch (spacing) of 15.24 
cm, and suspended in the D2O as shown in Fig. 2.   
The height to diameter ratio (H/2R) of the cylindrical core is 1.2.   
The infinite medium multiplication factor k∞ = 1.28.   
The diffusion area for thermal neutrons is L2 = 175 cm2, and the Fermi age for fast 
neutrons is τ = 120 cm2.   
Calculate the following reactor parameters: 
a. Material buckling. 
b. Critical radius, critical height and critical volume.  
c. Fast neutrons non-leakage probability Pf and thermal neutrons non-leakage probability 
Pth  
d. Estimate of the number of natural uranium fuel rods that would fit in this core. 
e. Calculate the weight of natural uranium and of the heavy water to be procured to make 
this reactor just critical and the total weight of the whole reactor core in metric tonnes. 
The density of the natural uranium metal can be taken as 19 gm/cm3, and the density of 
heavy water as 1.1 gm/cm3. 

15.24 cm 

2.54 cm 

R 


