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INTRODUCTION 
 

 Neutron interactions with matter can be either scattering or absorption reactions.  

Scattering can result in a change in the energy and direction of motion of a neutron but 

cannot directly cause the disappearance of a free neutron.  Absorption leads to the 

disappearance of free neutrons as a result of a nuclear reaction with fission or the formation 

of a new nucleus and another particle or particles such as protons, alpha particles and 

gamma-ray photons. 

 The probability of occurrence of these reactions is primarily dependent on the 

energy of the neutrons and on the properties of the nucleus with which it is interacting.  We 

here consider the different reactions by which a neutron can interact with matter. 

 

 
Figure 1.  Plutonium239 actual total, elastic, inelastic, fission and capture cross sections. 

 



 

 

 
Figure 2.  Plutonium239 group-averaged total, elastic, inelastic, fission and capture cross 

sections. 

 

 Neutron cross sections data are normally expressed in units of barns, where: 

 
-24 21[barn] = 10 [ ]cm . 

 

They are tabulated and plotted as a function of the kinetic energy of the neutrons in 

electron volts [eV] or million electron volts [MeV].  The actual measured cross section 

(Fig.1) displaying a large number of resonances or their evaluated group averages (Fig. 2), 

are normally used in numerical calculations. 

 Cross sections averaged over the appropriate neutrons energy range are needed for 

realistic computations.  A common error in numerical applications is the use of cross 

sections that are not correctly defined over the appropriate energy range. 

 

MICROSCOPIC CROSS SECTION, REACTION RATE DENSITY 

 

 We consider a thought or gedanken experiment to determine the reaction rate R 

[reactions / sec] that would occur in a small volume of a thin target material of area A [cm2] 

and thickness x [cm] when a neutron beam of neutrons moving in the x direction with a 

density n [neutrons/cm3] and velocity v  [cm/sec] as shown in Fig. 3. 



 

 

If the density of the material is ρ [gm / cm3], and its atomic weight is M [amu] we 

can use a modified form of Avogadro’s law to determine the nuclei density in the target as: 

 

    vN A
M


       (1) 

 

 
 

Figure 3.  Geometry for neutron reaction rate in thin target of volume V. 

 

 The reaction rate R should be construed to be proportional to the area of the target 

A, its thickness x, the number density of the particles in the neutron beam, n, the velocity 

of the neutrons, v , and the number density of the nuclei in the target N.  This can be 

expressed mathematically as: 

 

    
Reactions]

R A.x.n.v.N [
sec

     (2) 

 

The proportionality symbol can be replaced by an equality sign provided we add a 

proportionality constant, leading to: 

 

    
Reactions

R = σ.A.x.n.v.N  [ ]
sec

   (3) 

 

Since the volume of the target is: 

 

    .V A x ,      (4) 

 

we can define the reaction rate density as: 

 



 

 

    
3

R R Reactions
R'= = = n.v.N.σ  [ ]

V A.x cm .sec
   (5) 

 

From this equation we can infer the units of the proportionality constant as: 

 

  
' 3

2

3 3

[Reactions/(cm .sec)]
,or:[cm ]

.v. [neutrons/cm ].[cm/sec].(nuclei/cm )

R

n N


 
  

 
 (6) 

 

Thus the proportionality constant σ has units of area and physically represents the effective 

area that a nucleus in the target presents to the interacting neutrons in the impinging beam.  

 The number of particles in the beam crossing a unit area per unit time is designated 

as the beam intensity or the beam current, and is given by: 

 

    
3 2

neutrons cm neutrons
I = n.v . or:

cm sec (cm .sec)

  
  

   
  (7) 

 

 Thus the “microscopic cross section” can be written as: 

 

   
' 3

2

2 3

[Reactions/(cm .sec)]
, :[cm ]

. [neutrons/(cm .sec)].(nuclei/cm )

R
or

I N


 
  

 
, (8) 

 

which identifies it as the reaction rate density per unit beam intensity per nucleus in the 

target per unit volume, and the overall unit is a unit of area: cm2. 

 However, the characteristic size of a nucleus is in the range of 10-12 [cm], and 

accordingly, neutron cross sections data are more conveniently expressed in terms of the 

square of this characteristic distance in the barn unit, where: 

 
-24 21[barn]=10 [ ]cm . 

 

In this case reaction rate densities can be estimated as: 

 

    
' . .R I N        (9) 

 

This allows an interpretation of the microscopic cross section as the reaction rate 

density per unit beam intensity per nucleus per cubic centimeter of the target. 

 The cross section is not in general equal to the actual area of the nucleus.  For 

instance the radiative capture cross section for Au197 at the peak of 4.9 eV resonance is 

3x10-20 cm2, whereas the geometrical area of its nucleus is just 1.938x10-24 cm2.  The 

reaction cross section is much greater than the physical cross section of the nucleus, except 

at very high neutron energies where the cross section becomes of the same order of 

magnitude as the nucleus. 

 This can be calculated from the knowledge about the empirically determined 

expression for the radius of the nucleus as: 

 



 

 

    

1
3

0

13

0

r = r A , A is the mass number

r 1.35 10 [cm] 
   (10) 

 

The cross sectional area of a nucleus from Eqn. 10 becomes: 

 

    
2

2 2 23
0 [ ]s r r A cm       (11) 

 

For Au197, the area of the nucleus becomes: 

    

2
13 2 3

24 2

(1.35 10 ) (197)

1.938 10 [ ]

s

cm

 



 

 
 

 

 Since the cross section has such a small magnitude, the unit of the barn was chosen 

jokingly to express such a small area with the name of a large structure. 

 Incidentally, the characteristic size of the atom is given by the first Bohr’s radius 

as: 

 

 

-3
11 9

0 7

-3

7 1

7.297352 10
5.291772 10 [ ] 5.291772 10 [ ]

4 4 1.097373 10

is the fine structure constant = 7.297352 10

is the Rydberg constant = 1.097373 10 [ ]

m cm
R

R m




 



 








     

 





 

 

 Thus the nuclear to atomic radius ratio is: 

 

   
13

50

9

0

r 1.35 10
2.555 10

5.291772 10







  


 

 

MICROSCOPIC REACTION CROSS SECTIONS 
 

 Each probable reaction that a neutron can undergo with a nucleus is associated with 

a specific cross section.  The most important of them are: 

 

    

elastic scattering cross section

inelastic scattering cross section

radiative capture cross section

fission cross section

(n , p) reaction cross section

(n , T) reaction cross section

se

si

f

p

T































(n , ) reaction cross section

 

 



 

 

 The sum of the cross sections that can lead to the disappearance of the neutron is 

designated as the absorption cross section: 

 

    ...a f p T               (12) 

 

 The sum of the all reactions is designated as the total cross section: 

 

    
...t se si f p T

se si a

        

  

       

  
  (13) 

 

 The capture cross section incorporates all the cross sections that do not lead to 

fission: 

 

    ...c p T              (14) 

 

 Thus, for a fissile nucleus:  

 

    a c f          (15) 

The microscopic cross sections are tabulated as a function of energy and are 

compiled in data bases such as the Evaluated Nuclear Data File at Brookhaven National 

Laboratory (BNL) as ENDF-B VII, the latest roman numerals being the version number. 

 Cross sections plots for a light element, O16 are shown in Fig. 4, and for a heavy 

element, Pb208 are shown in Fig. 5. 

 
 

Figure 4.  Neutron reactions in a light element, O16. 



 

 

 

 
 

Figure 5.  Neutron reactions in a heavy element, Pb208. 

 

 The cross sections for U235 and U238 are shown in Figs. 6 and 7.  These graphs 

display a large number of resonances. 

 

 
 

Figure 6.  Actual neutron reactions in U235. 



 

 

 
 

Figure 7.  Actual neutron reactions in U238. 

 

 To calculate reaction rates of interest such as tritium production from Li6 (Fig. 8) 

and from Li7 (Fig. 9), and the threshold neutron multiplying reactions from U238 (Fig. 10), 

libraries of reaction cross sections or response functions are generated. 

 

 
 

Figure 8.  Reaction cross sections for tritium production in Li6. 



 

 

 

 
 

Figure 9.  Reaction cross sections for tritium production in Li7. 

 

 
 

Figure 10.  Threshold reactions in U238. 

 



 

 

ESTIMATION OF NUMBER DENSITIES 
 

The cross section is normally determined experimentally, and the number density 

N of the target material, can be calculated from a modified form of Avogadro’s law as: 

 

    
3

atoms or nuclei

cm
vN A

M

  
  

 
,   (16) 

 

which is a modification of the conventional form of Avogadro’s law: 

 

     ' atoms or moleculesv

g
N A

M
    (16)’ 

 

where:  ρ is the density of the target in [gm / cm3], 

  g is the mass of the target in [gm], 

  M is the atomic or molecular weight in atomic mass units in [gm / mole] or [amu], 

  Av=0.6023x1024 [nuclei, atoms, or molecules / mole], is Avogadro’s number. 

 

Four practical situations are encountered in the estimation of number density of 

materials. 

 

CASE I: PURE SUBSTANCES AND SINGLE SPECIES. 

 

The modified form of Avogadro’s can be applied in a straight forward way in the case of 

single species materials. 

 

EXAMPLE 1 Single species 

 

For Sodium (Na), 

 
3

24 24 3

v

ρ(Na)=0.97[gm/cm ], M(Na)=22.99[gm/mole],

ρ(Na) 0.97
N(Na)= A = 0.6023 10 =0.0254 10 [atoms/cm ]

M(Na) 22.99
 

 

 

When we do not have a single species or a pure substance, other cases present themselves 

in practice. 

 

CASE II: MOLECULAR AND ISOTOPIC COMPOSITIONS. ATOMIC 

PERCENTAGES, (a/0). 

 

Given: 

1. ρmixture of elements 

2. Atomic weights of constituent elements 

3. Mixture proportions as: i) Molecular compositions, ii) Atomic percentages (a/o). 

 



 

 

In this case: 

 

mixture
element v a

mixture

a

ρ
N = .A .f

M

Number of atoms of element
f =  

 Atom or molecule of mixture

     (17) 

 

EXAMPLE 2 Molecular composition 

 

In the case of molecules such as water, 

 
3

mixture 2

mixture 2

24
24 3

2

24 3

2

ρ =ρ(H O)=1.0 [gm/cm ],

M =M(H O)=(2 1.00797+1 15.994)=18.0153

0.6023x10
N(H O)=1 [1]=0.03343 10 [molecules/cm ]

18.0153

N(O)    =N(H O)             [1]=0.03343 10 [atoms/cm ]

N(H)    =N(H

 

  

 

24 3

2O)             [2]=0.06686 10 [atoms/cm ] 

 

 

EXAMPLE 3 Isotopic composition 

 

Isotopic abundances are normally reported in atomic percentages (a/o). 

Consider the case of Boron. 
3

mixture

10 11

10 11

mixture

24
10 24 3

24
11

ρ =ρ(B)=2.45 [gm/cm ]

M(B )=10.0, M(B )=11.0

a/o(B ) 19.8 %, a/o(B ) 80.2 %

M =0.198 10 +0.802 11 = 10.8

0.6023 10
N(B )=2.45 [0.198]=0.02701 10 [atoms/cm ]

10.8

0.6023 10
N(B )=2.45

1

 

 


  


 24 3[0.802]=0.110 10 [atoms/cm ]

0.8
 

 

 

EXAMPLE 4 Mixed Molecules and isotopic abundances 

 

We consider the case of boron carbide, B4C. 

 



 

 

3

mixture 4

10 11

12 13

mixture

24
24 3

ρ =ρ(B C)=2.52 [gm/cm ]

M(B)=10.81, M(C)=12.01

a/o(B ) 19.80 %, a/o(B ) 80.2 %

a/o(C ) 98.89 %, a/o(C ) 1.11 %

M =4 10.81 +12.01 = 55.25

0.6023 10
N(B)=2.52 [4]=0.1099 10 [atoms/cm

55.25

 

 




  

24
24 3

10 24 3

11 24 3

12 24 3

13

]

0.6023 10
N(C)=2.52 [1]=0.0275 10 [atoms/cm ]

55.25

N(B )=0.1980 N(B)=0.0218 10 [atoms/cm ]

N(B )=0.8020 N(B)=0.0881 10 [atoms/cm ]

N(C )=0.9889 N(C)=0.0272 10 [atoms/cm ]

N(C )=0.0111 N(C)=0.00


  







24 303 10 [atoms/cm ]

 

 

CASE III: COMPOSITION BY WEIGHT, ALLOYS AND ENRICHMENT, (w/o). 

 

Given: 

1. ρmixture 

2. Atomic weights of constituent elements 

3. Mixture proportions as weight percentages (w/o) 

 

In this case: 

 

mixture w
element v

element

w

effective
element v

element

ρ .f
N = .A ,

M

f =weight percentage of element

or:

ρ (element)
N = .A

M

    (18) 

 

EXAMPLE 5 Enrichment given in w/o 

 

We consider the case uranium enriched to 20 w/o in the U235 isotope. 

 



 

 

3

mixture

235 3

effective

238 3

effective

24
235 21 3

238

ρ =ρ(U)=19.1 [gm/cm ]

ρ (U )= 0.20 ρ(U)=0.20 19.1 [gm/cm ]

ρ (U )= 0.80 ρ(U)=0.80 19.1 [gm/cm ]

0.6023 10
N(U )=(0.20 19.1) =9.79 10 [atoms/cm ]

235.0439

0
N(U )=(0.80 19.1)

 

 


  

 
24

22 3.6023x10
=3.86 10 [atoms/cm ]

238.0508


 

 

EXAMPLE 6 Alloy compositions 

 

We consider Zircaloy-4 used as cladding material in fission reactors, with a density: 
3ρ(Zircaloy-4)=6.74 [gm/cm ] , 

and composition: 

 
98.24 w/o Zr,   M(Zr)=91.220

0.10 w/o Cr,   M(Cr)=51.996

0.21 w/o Fe,   M(Fe)=55.847

1.45 w/o Sn,   M(Sn)=118.69

 

 
24

22 3

24
19 3

24
20 3

0.6023x10
N(Zr)=(6.745 0.9824) =4.37 10 [atoms/cm ]

91.22

0.6023x10
N(Cr)=(6.745 0.0010) =7.81 10 [atoms/cm ]

51.996

0.6023 10
N(Fe)=(6.745 0.0021) =1.53 10 [atoms/cm ]

55.847

0.6
N(Sn)=(6.745 0.0145)

  

  


  

 
24

20 3023 10
=4.96 10 [atoms/cm ]

118.69




 

 

EXAMPLE 7 Aqueous Solutions (Mixed Case I and Case II) 

 

We consider the case of Sulfuric Acid 10 w/0 in solution in water, with a density: 
3

2 4 2ρ(H SO +H O)=1.08 [gm/cm ]  

 



 

 

3

effective 2

3

effective 2 4

24
22 3

2

24
20 3

2 4

ρ (H O)    = 0.90 1.08 [gm/cm ]

ρ (H SO )= 0.10 1.08 [gm/cm ]

0.6023 10
N(H O)    =(0.90 1.08) =3.252 10 [atoms/cm ]

18

0.6023 10
N(H SO )=(0.10 1.08) =6.638 10 [atoms/cm ]

98

N(H)=2.N(H






  


  

22 20 22 3

2 2 4

22 20 22 3

2 2 4

20 3

2 4

1 22

O)+2.N(H SO )=2 3.252 10 +2 6.638 10 =6.638 10 [atoms/cm ]

N(O)=1.N(H O)+4.N(H SO )=1 3.252 10 +4 6.638 10 =3.518 10 [atoms/cm ]

N(S)=1.N(H SO )=6.638 10 [atoms/cm ]

N(H )=0.99985 N(H)=6.637 10

    

    



  3

2 18 3

16 22 3

17 19 3

32 20 3

33

[atoms/cm ]

N(D )=0.00015 N(H)=9.956 10 [atoms/cm ]

N(O )=0.99756 N(O)=3.509 10 [atoms/cm ]

N(O )=0.00039 N(O)=1.372 10 [atoms/cm ]

N(S )=0.95000 N(S)=6.306 10 [atoms/cm ]

N(S )=0.00750 N(S)=4.978

 

 

 

 

  18 3

34 19 3

36 16 3

10 [atoms/cm ]

N(S )=0.04200 N(S)=2.788 10 [atoms/cm ]

N(S )=0.00015 N(S)=9.956 10 [atoms/cm ]

 

 

 

CASE IV: HETEROGENEOUS SYSTEMS. VOLUMETRIC MIXTURES, (v/o). 

 

Given: 

1. Volume fractions (v/o) of either cases I or II. 

2. Densities of components of volume mix. 

 

In this case: 

 
*N (element)=N(element in primary mix) (Volume fraction of primary

 mix in secondary mix)


  (19) 

 

EXAMPLE 8 Volumetric mixture 

 

Here we consider a secondary mix of 10 v/0 Zircaloy-4 and 90 v/0 water.  The Zircaloy-4 

and water can be considered as primary mixes and we use their results from examples 1 

and 6: 

 



 

 

*

*

*

*

*

*

N (Zr)=0.10 N(Zr)

N (Cr)=0.10 N(Cr)

N (Sn)=0.10 N(Sn)

N (Fe)=0.10 N(Fe)

N (H)=0.90 N(H)

N (O)=0.90 N(O)

 

 

EXAMPLE 9 Volumetric Homogenization. 

 

We consider the homogenization of a uranium dioxide fuel rod of 0.7 cm diameter covered 

with stainless steel, considered as Fe, cladding of 0.05 cm thickness.  The densities of these 

materials are: 

 
3 3

2ρ(UO )=10.0[gm/cm ],ρ(Fe)=7.8[gm/cm ]  

 

We can calculate the following number densities; 

 

24 22 3

24 22 3

2 2

22 3

2 2

22 3

2 2

2

2

7.8
N(Fe)= 0.6023 10 =8.41 10 [atoms/cm ]

55.85

10.0
N(UO )= 0.6023 10 =2.23 10 [molecules/cm (UO )]

(238+32)

N(U)=N(UO )=2.23 10 [atoms/cm (UO )]

N(O)=2N(UO )=4.46 10 [atoms/cm (UO )]

π
V(UO )= (0.7) =0.3

4

 

 





2

2 2 2

849[cm ]

π
V(Fe)= [(0.8) -(0.7) ]=0.1178[cm ]

4

 

 

The homogenized number densities become: 

 

* 22 22 32

2

* * 22 3

* 22 22 3

2

V(UO ) 0.3849
N (U)=N(U) =2.23 10 =1.71 10 [atoms/cm ]

V(UO )+V(Fe) 0.3849+0.1178

N (O)=2N (U) =3.42 10 [atoms/cm ]

V(Fe) 0.1178
N (Fe)=N(Fe) =8.41 10 =1.97 10 [atoms/cm ]

V(UO )+V(Fe) 0.3849+0.1178

 



 

 



 

 

 

EXAMPLE 10 

 

We consider some uranium dioxide fuel of density, 
3

2( ) 10.5[ / ]UO gm cm  , that has its 

uranium enriched to ε = 30 w/o in the U235 isotope.  To calculate the number density of 

U235 we use the formula: 

 

    

235

235

235

( )
( )

( )

effective

v

U
N U A

M U


  

 

The effective density for U235 is: 

 

   

 
235

235 2
2 3

2 2

( )( ) ( ) ( )
( ) ( ). .

( ) ( ) ( )
effective

gm UOM U gm U gm U
U UO

M UO cm gm UO gm U
  

    
     

    
 

 

We need to determine M(U) and M(UO2).  To determine the atomic weight of U, we use: 

 

    

235 238

235 238

235 238

235

238

235 238

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

:

( ) . ( )

( ) (1 ). ( )

:

1 (1 )

( ) ( ) ( )

v v v

N U N U N U

U U U
A A A

M U M U M U

Since

U U

U U

Then

M U M U M U

  

  

  

 

 

 



 


 

 

 

From the last equation we can calculate the atomic mass of the enriched uranium as: 

 

    

235 238

238 235

( ). ( )
( )

. ( ) (1 ). ( )

235.04  238.0508

(0.30 x 238.0508) + (0.70 x 235.04) 

237.14

M U M U
M U

M U M U 


 






 

 

We can also evaluate the molecular mass of uranium dioxide as: 

 

    2 2( ) ( ) ( ) 237.14 (2 15.994)=269.14M UO M U M O      

 



 

 

From which the number density of U235 can finally be calculated as: 

 

    

235

235

235

2

2

235

24

21 3

( )
( )

( )

( )
( ). .

( )

( )

237.14
10.5 0.30

269.14 0.6023 10
235.04

7.112 10 [ / ]

effective

v

U
N U Av

M U

M U
UO

M UO
A

M U

atoms cm



 





 

 

 

 

MACROSCOPIC CROSS SECTION AND MEAN FREE PATH 

 

The sum of the microscopic cross sections of the individual nuclei in the target per 

unit volume is designated as the “macroscopic cross section” and is given by: 

 

    
2

1

3
. : [ ]

cm
N or cm

cm
  

   
 

    (20) 

 

 If a mixture of nuclear species exists in a unit volume, the overall macroscopic cross 

section becomes: 

 

    
1

1 1 2 2. . ... . [ ]n nN N N cm           (20)’ 

 

The macroscopic cross section can be conveniently estimated from the relation: 

 

    
10.6 . [ ]cm

M


        (20)’’ 

 

where: the microscopic cross section σ is expressed in units of barns. 

 

EXAMPLE 11 

 

 The macroscopic scattering cross section for U238 with a density of 19 [gm/cm3] is: 

10.6 . [ ]s s cm
M


    

 

    
119

0.6 8.9 0.426[ ]
238

s cm    

 

EXAMPLE 12 



 

 

 

 Consider a uniform mixture of U235 and graphite with moderator to fuel ratio of 

10,000.  The macroscopic absorption cross section for carbon with a density of 1.6 gm/cm3 

is: 

 

    
3 11.6

0.6 3.4 10 0.00027[ ]
12

aC cm       

 

 The number density of U235 is a factor 10-4 that of the graphite, hence: 

 

    
4 11.6

10 0.6 681 0.00545[ ]
12

aU cm       

 

 The total macroscopic cross section for the moderator and fuel mixture becomes: 

 

    
10.00027 0.00545 0.0057[ ]a aC aU cm        

 

A simple expression for the reaction rate density is just the product of the beam 

intensity and the macroscopic cross section as: 

 

    
'

3
.

.sec

reactions
R I

cm

 
   

 
     (21) 

 

 The inverse of the macroscopic cross section has units of length and has the 

physical meaning of representing the average distance traveled by a neutron between two 

interactions or “mean free path”: 

 

    
1

mean free path: [ ]cm 


    (22) 

NEUTRON FLUX 

 

 In the case of a radiation shield or a nuclear reactor neutrons acquire a random 

directional motion, which suggests the replacement of the velocity vector in the definition 

of beam intensity or current by the magnitude of the velocity or speed, which defines the 

neutron flux as: 

 

    
2.sec

neutron
n v nv

cm


 
   

 
,    (23) 

 

which is now a scalar rather than a vector quantity.   

The neutron flux can be interpreted as the total distance traveled by the neutrons 

per unit volume per unit time [cm / (cm3.sec)]. 



 

 

 The neutron flux can also be considered as the number of neutrons per second 

entering an imaginary sphere of surface area of 4 cm2 and with a diametrical plane of area 

equal to 1 cm2. 

The reaction rate density can still be expressed in term of the neutron flux as: 

 

    
'

3
.

.sec

reactions
R

cm


 
   

 
     (24) 

 

The reaction rate is now: 

 

    . .
sec

reactions
R V

 
   

 
    (25) 

 

where V is the volume under consideration in cm3. 

 

 In general, the reaction rate is an integral of the form: 

 

    ( , ) ( , )
sec

E V

reactions
R E r E r dEdV

 
   

 
  ,  (26) 

 

where the energy and spatial dependencies of both the neutron flux and the cross sections 

are accounted for.  This integral is approximated as a summation in terms of the flux per 

unit energy interval as the form: 

 

    , ,
sec

i j

i j i j i j

E V

reactions
R E V

 
     

 
   (27) 

 

For a constant cross section in each volume: 

 

    

,

( ).
sec

:
i

i i

i

i i j i

E

reactions
R V

where E



 

 
   

 

 




    (28) 

 

 The last equation is sometimes expressed in the inner product format: 

 

    ( ), ( ) .
sec

reactions
R E E V

 
    

 
   (29) 

 

THERMAL NEUTRONS MAXWELLIAN VELOCITY 

DISTRIBUTION 
 



 

 

 When fast neutrons from the fission process collide with the reactor or shield 

material they loose they energy to the thermal equilibrium energy E = kT where they have 

as much probability of gaining energy as of loosing it through further collisions. 

 The thermalized neutrons diffuse through the surrounding material until they are 

absorbed or leak from its surface.  They have a population density or number of neutrons 

per cm3 that follows the Maxwellian distribution: 

 

    
 

2v2

2
0 3/ 2

4 v
n(v)= n

2 kT/m

m

kTe






    (30) 

 

 This distribution is normalized over all neutron velocities to n0 as: 

 

    
 

2v2

2
0 03/ 2

0

4 v
n dv = n

2 kT/m

m

kTe







  

 
23

27

3

0

where: k is the Boltmann constant=1.3805x10 [ / ]

m is the rest mass of the neutron=1.675x10 [ ]

n is the thermal neutrons density [n/cm ]

273 ,is the Kelvin temperatureo

Joule K

kg

T C





 

 

 

If we let: 

 

    
 

3/ 2

4

2 kT/m
C




  

 

then we can write: 

 

    

2v

2 2
0n(v)= n Cv

m

kTe


     (31) 

 

MOST PROBABLE VELOCITY 
 

 The most probable velocity of thermal neutrons would occur at the maximum point 

of the Maxwellian distribution and can be obtained by setting the derivative of the neutron 

density distribution with respect to the velocity equal to zero.  

 

    

2 2v v

22 2
0 0

dn(v) mv
2 v v 0

dv 2kT

m m

kT kTn C e n C e
 

    

 

There follows that: 

 



 

 

    

2 2v v

22 2
0 0

dn(v) mv
2 v v 0

dv kT

m m

kT kTn C e n C e
 

    

 

 The most probable thermal neutron velocity becomes: 

 

    
mp

2
v , v 0

kT

m
        (32) 

 

 The neutron kinetic energy corresponding to the most probable velocity is: 

 

    
2

mp

1 1 2kT
v kT

2 2 m
mpE m m      (33) 

 

 Thermal neutrons are also referred to as kT neutrons.  It is interesting to note that 

the thermal neutrons energy is independent of its mass.   

The Emp energy is different from the average neutrons kinetic energy which is equal 

to: 

 

    
3

2
E kT       (34) 

 

EXAMPLE 13 

 

 At the most probable velocity the thermal neutrons kinetic energy is: 

 

    

-16

12

4

1
kT=1.38 10 293

1.6 10

252.7125 10

0.025

mp

erg eV
E K

K erg

eV

eV





 


 



 

 

 Thermal neutrons are also designated as 0.025 eV neutrons. 

 

EXAMPLE 14 

 

 The most probable velocity for neutrons at room temperature or 20 oC can be 

calculated as: 

 

    

16

mp 24

4

2 1.38 10 (273 20)
v

1.66 10

22.0716 10 [cm/sec]

2,200[m/sec]




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



 



   (35) 

 



 

 

 Thermal neutrons are also designated as 2,200 m/sec neutrons. 

 

MEAN NEUTRON VELOCITY 
 

 The mean, average or mathematical expectation of the thermal neutrons velocity 

can be estimated from: 
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where we applied the normalization condition for the Maxwellian distribution. 

 To estimate the integral, let us make the change of variables: 
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 Thus we can write: 
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 Integrating by parts by using the relationship: 

 

    udv uv vdu    

 

we get: 
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 Thus: 
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TEMPERATURE CORRECTION 
 

 Most materials in the thermal neutrons region have an absorption cross section that 

varies inversely with the neutron velocity: 

 



 

 

    
1/2

1/2

1

v

1

E

1

T

a 





 

 

since:     
21

v , 273
2

oE m kT T C     

 

 Accordingly, we can write for the absorption cross section at any absolute 

temperature T, in terms of the thermal absorption cross section at T = 273 + 20 oC = 293 

Kelvin: 
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a
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 From which the temperature corrected absorption cross section becomes: 

 

    

1/ 2
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( ) (293)a aT
T

 
 

  
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    (37) 

 

MAXWELLIAN AND TEMPERATURE CROSS SECTION 

CORRECTION 
 

 The ratio of the mean velocity to the most probable velocity is given by: 

 

    
mp

8

v 4 2
1.12838

v 2

kT

m

kT

m



 
     

 

 Thus the average thermal neutron velocity is larger than the most probable velocity.  

Since the absorption cross section is inversely proportional to the neutron speed, it should 

also be corrected by the inverse of the ratio of the mean to most probable velocity.   

 The combined Maxwellian and temperature corrected absorption cross section for 

a 1/v absorber can thus be written as: 

 

    

1/ 2
293

' ( ) (293)
2

a aT
T


 

  
   

  
   (38) 

 

EXAMPLE 15 



 

 

 

 The absorption cross sections for the gold isotopes at 0.025 eV are: 

 

    

197

198

(293) 98.8

(293) 26,000.0

Au

a

Au

a

b

b








 

 

 For a foil of gold irradiated in a reactor at a temperature of 50 oC: 

 

    
1 197 198

0 79 79n Au Au     

 

The Maxwellian and temperature corrected absorption cross sections of the two 

gold isotopes will be: 
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  



  
      

  
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EXERCISE 
 

1. Compare the area of the nucleus of U238 to its neutron radiative capture at thermal 

(0.025 eV) and fission (1.99 MeV) energies. 

2. Calculate the macroscopic absorption cross section for natural uranium. 

3. Estimate the mean free path for thermal neutrons scattering in beryllium. 

4. A stainless steel composition is 69 w/o Fe, 17 w/o chromium, 12 w/o nickel and 2 w/o 

molybdenum.  Calculate its absorption cross section for thermal neutrons. 

5. For 2,200 m/sec or thermal neutrons, calculate the following quantities: 

1. Number densities, 

2. Total macroscopic cross-sections, 

3. Total mean free paths, 

In the following materials: 

1. Uranium, 

2. Beryllium,  

3. Carbon in the form of graphite. (Note that diamonds is a form of carbon with a 

high density). 
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