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INTRODUCTION 
 
 The diffusion of neutrons in a medium depends on whether the medium is 
multiplying, that is fissions occur in it or not.  In a non-multiplying medium containing 
no fissile materials, the neutron diffusion equation results in a source problem that is 
mathematically different than the eigenvalue problem that it yields in a multiplying 
medium, and consequently requires a different treatment. 
 The source type of problem is encountered in shielding and dosimetry 
calculations, whereas the eigenvalue type of problem is encountered in criticality 
calculations. 
 
NEUTRON ATTENUATION 
 
 We consider a beam of neutrons of initial intensity I0 impingent on a thin target of 
a scattering material of thickness x and total macroscopic cross section Σt.   
 

 
 

Figure 1. Thin target neutron beam attenuation. 
 
 In one dimension the particles hitting the thin target will be scattered out of the 
beam and only a fraction of them will reach a detector emplaced behind the target.  Only 
the neutrons that do not interact with the target would reach the detector.  This fraction 
reaching the detector is observed to follow an exponential attenuation law as: 
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 The attenuation factor in a thin shield of thickness x is: 
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 Taking the natural logarithm of both sides we get: 
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 If the desired attenuation and the macroscopic cross section in the medium used 
as shield are known, then we can estimate the needed thickness x from: 
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 If on the other hand, the thickness of the material is known, and the attenuation is 
measure, then the value of the microscopic cross section at a given neutron energy can be 
estimated from: 
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 This approach applies only to thin shields.  Otherwise the concepts of build-up 
factors or removal cross sections can be used in thick shield and broad beam situations. 



 
TIME DEPENDENT DIFFUSION EQUATION 
 
 The continuity equation for the neutron density n [neutrons / cm3] is: 
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where: 
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 is the neutron current
JJ Jdiv J= .J= ,is the divergence operator
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 is the neutron flux [neutrons/(cm .sec)]
 is the macroscopic absorption cross section [cm ]a

J

φ

∂∂ ∂
∇ + +

∂ ∂ ∂

Σ

 

 
 Notice that the divergence operator acts on the components of a vector such as the 
current J  and generates a scalar quantity. 
 The neutron current is described by Fick’s law as: 
 
    J Dgrad Dφ φ= − = − ∇     (5) 
 
where: 

 

D is the diffusion coefficient [cm]
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 It must be observed here that taking the gradient of a scalar function such as the 
flux φ , generates a vector as the current J . 
 Combining Eqns. 4 and 5 we obtain the diffusion equation for the neutron flux: 
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STEADY STATE DIFFUSION EQUATION 
 
 The steady state diffusion equation can be obtained by equating the partial time 
derivative to zero: 
 
   .(D ( , , )) ( , , ) 0ax y z x y z Sφ φ+∇ ∇ −Σ + =    (7) 
 
 If we further assume that we have a uniform and homogeneous medium, the 
diffusion coefficient can be considered as a constant: 
 
   ( . ( , , )) ( , , ) 0aD x y z x y z Sφ φ+ ∇ ∇ −Σ + =  
 
 Now the Laplacian operator is: 
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resulting in: 
 
   2 ( , , ) ( , , ) 0aD x y z x y z Sφ φ+ ∇ −Σ + =    (8) 
 
 Dividing into the diffusion coefficient D we get: 
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 Defining the diffusion area as: 
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and the diffusion length L as: 
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we can write the steady state diffusion equation as: 
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 Since this is a second order partial differential equation it needs the definition of 
two boundary conditions for each dimension in its solution.  The equation is analogous to 
the one for the simple harmonic oscillator, albeit it has a second order spatial time 
derivative rather than in time.  Still, the solutions for the simple harmonic oscillator can 
be used by replacing the time variable by the spatial variable. 
 
POINT NEUTRON SOURCE STREAMING IN A VACUUM 
 
 It is of interest to consider the flux generated in vacuum, such as from a nuclear 
reactor on a space probe, from a point source of neutrons for comparison to the case of a 
diffusing medium.  In this case, the vacuum does not possess a diffusion coefficient or an 
absorption cross section and the radiation undergoes a process of “streaming” from the 
source.  In this case, like a source of light, the decrease in the intensity is purely 
geometrical, and follows the inverse square law: 
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where r is the radial distance from the source. 
 

 
 

Figure 2. Particle streaming from a point source S [neutrons/sec] in a vacuum. 
 
POINT NEUTRON SOURCE IN A DIFFUSING MEDIUM 
 
 In this case Eqn. 11 applies taken in spherical geometry as: 
 

r S 
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 Expressing the Laplacian operator in its spherical geometry form we get: 
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 Notice that the partial derivative is here replaced by a total derivative since we 
have a single dimension in spherical geometry, which makes the equation an ordinary, 
rather than a partial differential equation of the second order. 

 
 

Figure 3. Particle diffusion from a point source S in a nonmultiplying medium with 
diffusion coefficient D and diffusion length L. 

 
 We can first consider the homogeneous part of Eqn. 14 as: 
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To solve such a spherical geometry ordinary differential equation it is convenient 

to make the change of variable: 
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 Recalling the chain rule of differentiation: 
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and applying it to Eqn. 16, we get: 
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Multiplying both sides by r2, we get: 
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Taking the derivative with respect to r and applying the chain rule of 

differentiation to the second term on the right: 
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Dividing by r2 we get an expression for the Laplacian operator in term of the 

variable w: 
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 Substituting Eqn. 18 and 16 into Eqn. 15, we get: 
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For all values of r not equal to zero, this equation reduces to a simple form for 

which we can readily find a solution: 
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 This equation is analogous to the equation of the simple harmonic oscillator with 
the time variable replaced by the spatial radial variable, and a positive sign on the right 
hand side, and allows an exponential solution with two constants of integration as: 
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 Using Eqn. 16, we can now get the solution for the flux as; 
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 The second term leads to a solution involving an infinite value for the flux, which 
is not practically feasible since the flux must be finite in magnitude, implying that the 
constant B = 0, and: 
 

   ( )

r
Ler A

r
φ

−

=        (22) 

 
 To determine the second constant of integration A, knowing that the solution does 
not apply at the origin r = 0, we surround the source by a sphere of radius r and integrate 
the current J(r) over the surface.  As the radius of the sphere shrinks to zero, the current 
integrated over the surface tends to the strength of the source S: 
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 Applying Fick’s law from Eqn. 5 to the flux solution in Eqn. 22, using the chain 
law of differentiation, we get: 
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 Substituting from Eqn. 24 into Eqn. 23 we get: 
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 Taking the limit yields zero for the first term and unity and unity for the second 
term on the right hand side, resulting in the value of the integration constant A: 
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 Substituting A in the expression for the flux we finally get: 
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 It is of interest to compare this expression for the flux in a diffusing medium 
compared with the one for the flux in a vacuum: one of the radial position r factors in the 
denominator has been replaced by a decaying exponential in the numerator including the 
diffusion length L, and by the diffusion coefficient D in the denominator restoring the 
appropriate units to the expression for the flux.  The solution is not valid at the origin r = 
0, since r was cancelled on both sides of an equation during the derivation, which makes 
the solution valid everywhere except at the origin. 
 
PROCEDURE TO ESTIMATE THE FLUX FROM A POINT 
SOURCE IN A DIFFUSING MEDIUM 
 
 The following procedure allows the display the results from Eqn. 26 requiring an 
input of the source strength S, diffusion coefficient D, and diffusion length L for different 
moderator media. 
 
! Neutron flux from a point source in an infinite nonmultiplying  
! moderator medium. 
! phi(r)=S*exp(-r/L)/4*Pi*D*r 
! Program saves output to file:output1 
! This output file can be exported to a plotting routine 
! M. Ragheb, Univ. of Illinois at Urbana-Champaign 
! 
 program flux 
 real :: Pi = 3.14159 
! source strength  
 real :: S = 10.0E+10 
! diffusion coefficient (D2O) 
 real :: D = 0.62 



! diffusion length  
 real :: L = 116.0.0 (D2O) 
 integer :: steps=10 
 real phi(100), r(100) 
 write(*,*) S,D,L 
! Open output file 
 open(10,file='output4') 
! Calculate ratio phi(r) 
 do i =  1, steps 
  r(i) = i 
  phi(i) = (S*exp(-r(i)/L))/(4.0*Pi*D*r(i)) 
! Write results on output file 
  write(10,*) r(i), phi(i) 
! Display results on screen 
  write(*,*) r(i), phi(i) 
!  pause 
 end do 
 end 
 

Figure 4. Procedure for generating the flux from a point source in an infinite medium. 
 

 
 

Figure 5. Neutron flux from a point source of strength S=1010 [n/sec] in H2O with a 
diffusion coefficient D = 0.164 [cm] and diffusion length L = 2.73 [cm]. 
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TWO ENERGY GROUPS NEUTRON MODERATION 
 
 For a fast and thermal energy group of neutrons the moderating properties are 
different as shown in Table 1. 
 

Table 1. Fast and thermal neutron ages and diffusion areas for different moderators. 
 

Moderator 
Fast group age 

τ 
[cm2] 

Thermal group diffusion 
length 

L2 

[cm2] 
H2O 27 8.1 
D2O 131 3x104 
Be 102 480 
Graphite 368 3,500 
 
 One can write two diffusion equations, one for the fast group, and one for the 
thermal group. 
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 The slowing down density q is a loss term in the fast group equation, but a gain 
term in the thermal group equation coupling the two groups: 
 
   fast fastq φ= ∑        (28) 
 
 Dividing the fast and thermal group equations by their respective diffusion 
coefficients: 
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 Defining the fast neutron age as: 
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and the thermal group diffusion area as: 
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we can rewrite the equations as: 
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 In spherical geometry the fast group flux has a solution similar to that of Eqn. 26, 
yielding: 
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 Substituting the value for the fast flux in the second equation, one can solve the 
inhomogeneous equation: 
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to yield the thermal group flux as: 
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FINITE MEDIA DIFFUSION 
 
 We consider a planar fuel unit cell in a fission reactor surrounded with a 
moderator with a constant neutron source S.  Our goal is to estimate the fluxes in the two 
different media of moderator and fuel.  Such calculations are important for the estimation 
of the fuel utilization factor f in the four factor formula. 
 We define a source of thermal neutrons in the moderator region alone: 
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 In the fuel region, the neutron diffusion equation in a one dimensional cartesian 
coordinate system is: 
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Figure 6. Unit cell of plate reactor fuel surrounded by a moderator. 

 
 For a finite medium, we chose the hyperbolic cosine solution to the equation 
instead of the exponential form, since it is more suitable for finite size media in terms of 
application of the boundary conditions: 
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 To apply the boundary conditions and estimate the constants C and E, we write 
the expression for the current: 
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 Based on symmetry considerations, the current at x = -a should be zero: 
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 The cosh solution is retained, and the sinh solution is dropped (E = 0), yielding: 
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 In the moderator region, the diffusion equation with the source S0 is: 
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 The particular solution is: 
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 The complementary solution is: 
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 Adding the complementary and particular solutions, we get: 
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 Estimating the current in the moderator region yields: 
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 Applying the boundary condition: 
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 Again, the cosh solution is retained, and the sinh solution dropped (B=0), 
yielding: 
 

   0
mod

mod mod

( )( ) cosh
a

b x Sx A
L

φ −
= − +

∑
    (47) 

 
 Further applying the two interface boundary conditions of the continuity for the 
flux and the current at x = 0, yields the two equations in the two unknowns A and C: 
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 Writing the two linear equations in the two unknowns A and C: 
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or: 
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 The solution for the two constants A and C are: 
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 Multiplying the expressions for A and C by LfuelLmod, simplifies them to: 
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 Thus the solutions for the fluxes in the fuel and in the moderator regions are: 
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APPENDIX 
 
THE SIMPLE HARMONIC OSCILLATOR (SHO) 
 
 The solutions to the differential equations describing the Simple Harmonic 
Oscillator (SHO) are analogous to the equations describing the diffusion of neutrons in 
non-multiplying or multiplying media.  In the analogy, the time variable in the SHO 
equations and solutions is replaced by the spatial variable in the case of neutron diffusion.  
 
 HORIZONTAL SPRING SIMPLE HARMONIC OSCILLATOR 
 
 Writing the equation of motion for a mass m on an horizontal plane with a viscous 
damping coefficient β, held by a spring with constant k: 
 
   mx x kxβ= − −        (1) 
 

 
 

Figure A1. Horizontal spring simple harmonic oscillator. 
 
 Ignoring the viscous damping term, we get: 
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or: 
 
   2x xω= −        (2) 
where: 

 frequency 2k f
m

ω π= =  

 
 This is analogous to the harmonic motion of the simple pendulum where the 
energy oscillates between being in the form of kinetic energy of the mass m and potential 
energy.  It also possesses an electrical circuit analog. 
 
 TUNING CIRCUIT ANALOG 
 
 If we consider a tuning circuit composed of a resistor R, an inductance L, and a 
capacitance C, the voltage through the circuit in terms of the charge q is given by: 
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Figure A2. RLC tuning circuit with voltage source. 
 
 For no applied potential and zero dissipative resistive component R it reduces to: 
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Figure A3. The LC oscillator circuit without resistive dissipative element.  The energy 
stored in the electric field in the capacitor and the energy stored in the magnetic field in 

the inductor oscillate between one form to the other. 
 
 This can be written as: 
 
   2q qω= −        (5) 
where: 

 1frequency 2 f
LC

ω π= =  

 
 OSCILLATORY HARMONIC SOLUTION 
 
 Both Eqns. 2 and 5 have the general form: 
 
   2( ) ( )x t x tω= −       (6) 

C L 



 
They possess an oscillatory or harmonic solution which can be written in either one of the 
alternative forms: 
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 EXPONENTIAL GROWTH AND DECAY SOLUTION 
 
 Whenever the right hand side of Eqn. 6 has a positive rather than a negative sign: 
 
   2( ) ( )x t x tω= +       (10) 
 
The solution is a negative and positive exponential decay and growth given by: 
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where cosh(x) and sinh(x) are the hyperbolic cosine and sine functions, with: 
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 The exponential form of the solution is usually adopted in the case of infinite 
media, whereas the hyperbolic sine and cosine form is used in the case of finite media, 
facilitating the determination of the constants of integration in either case. 
 
EXERCISES 
 
1. Calculate the thickness of a shield made out of: 
a) Water. 
b) Graphite. 
that would attenuate a beam of neutrons by a factor of: 
a) One million times (10-6). 
b) One billion times (10-9). 
2. Plot the neutron fluxes away from the origin for a point neutron source of strength 
S=1010 [n/sec] in an infinite medium of the following moderators: 
a) H2O: diffusion coefficient D = 0.164 cm, diffusion length L = 2.73 cm. 
b) D2O: diffusion coefficient D = 0.620 cm, diffusion length L = 116.0 cm. 
3. Compare the fluxes generated in the previous problem to that in a vacuum. 
4. Estimate the flux and current in vacuum at the midpoint between two sources of 
strength S each and separated by a distance of 100 cm.   
Hint: The current is a vector and adds up vectorially, whereas the flux is a scalar.  
5. Estimate the flux and current in a diffusing medium with diffusion length L = 2.73 cm 
and diffusion coefficient D = 0.164 cm (H2O) at the midpoint between two sources of 
strength S each and separated by a distance of 100 cm. 
6. Estimate the flux and current in vacuum at the center of: 
a) A square, 
b) A cube, 
c) An equilateral triangle 
with a source S at each corner and a side length of 100 cm. 
7. Estimate the flux and current in a diffusing medium with diffusion length L = 2.73 cm 
and diffusion coefficient D = 0.164 cm (H2O) in the form of: 
a) A square, 
b) A cube, 
c) An equilateral triangle 
with a source S at each corner and a side length of 100 cm. 
8. Through direct substitution prove that the different general forms given for the solution 
of the Simple Harmonic Oscillator do indeed satisfy the underlying differential equation. 
9. Compare the magnitude of the neutron flux generated by a source of strength S=1010 
[neutrons / second], at a distance of 100 cm from the source in spherical geometry, 
1. In a vacuum. 



2. In a diffusing medium with diffusion coefficient D=1 cm, and macroscopic absorption 
cross section equal to 0.1 cm-1. 
10. Prove that the thermal group flux for a two group slowing down of a fast neutron 
source S in a moderating medium is given by: 
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