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INTRODUCTION 
 
 In Monte Carlo transport calculations, we normally wish to estimate reaction rates 
of interest.  We start by summing up the particle statistical weights in regions of interest 
and use primary estimators for the collision density.  Then secondary estimators are used 
to estimate the quantities of interest needed in the dosimetry, materials, heat transfer, 
shielding, criticality, and other aspects of design. 
 
PRIMARY ESTIMATORS 
 

1. THE COLLISION ESTIMATOR 
 

The ingoing collision density ψ  particle transport equation can be written in its 
operator form as: 
 
    (cS TC)ψ ψ= +      (1) 
 
where:  T is the transport kernel, 
  C is the collision kernel, 

Sc=TC is the first event source, or the uncollided particle contribution to 
each phase space point from the physical source S. 

 
A Monte Carlo simulation proceeds by alternatively transporting and then colliding the 
source particles to yield the Neumann series solution to Eq. 1 as: 
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so that the i-th term corresponds to a particle that collided I times, and the zero-th term 
represents the first event source.  Rather than carry out an analog simulation, the 
absorption-weighting method is normally used.  When a normalized transport kernel T is 
used, a statistical weight is assigned to the particle and is adjusted at each collision by the 
nonabsorption or survival probability: 
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where sΣ  is the macroscopic scattering cross section, and tΣ  is the total cross section. 
 Thus, for a starting particle of statistical weight , the j-th particle’s weight at 
the i-th collision in region v of a homogeneous medium will be: 
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 In the standard Monte Carlo method the collision density fluence estimator will 
estimate in our notation the fluence over a region v as: 
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where:  φ  is the fluence in region v in units of [interactions/(cm2.source particle)], 
   is the statistical weight of the j-th particle scattering in region v, v j

iW
   = 1 for a normalized physical source, 0

v jW
  n is the total number of histories generated, 

Vv is the volume of region v. 
 
 A major difficulty of the estimator in Eq. 5 is that it assumes complete sampling 
of the phase space; in the sense that to obtain the Neumann series solution, the Neumann 
series terms must occur with uniform frequency in different volumes of interest during a 
given simulation.  This means that Eq. 5 is assumed to be of the form: 
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 In the limit of complete uniform sampling of the considered phase space, when 

 one can expect that: ,n →∞
 
        (7) 
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and we get the right estimate for the Neumann series solution.  If the conditions of Eqs. 6 
and 7 are not satisfied, an effective bias in the result must be expected, and does in fact 
occur. 



 
2. THE TRACK LENGTH ESTIMATOR 

 
This is another estimator used for the estimation of the flux.  In this case Eq. 5 is 

modified to the form: 
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where:   is the track length of the j-th particle scattering in region v in the i-th 

history. 

j
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Notice that in this case the distance traveled is replaced to the inverse of the total 

macroscopic cross section, which in turn is equal to the collision mean free path.  The 
track length estimator performs better than the collision estimator in regions of thin 
optical length where the particles will definitely pass through, but not necessarily collide 
in a given history. 
 

3. THE LAST EVENT OR ANALOG ESTIMATOR 
 

The collision and the track length estimators are the most widely used estimators 
for the calculation of particle fluxes.  Other estimators have been suggested and widely 
used.  As an example is the analog estimator which scores each time a particle is 
absorbed in the region of interest: 
 

    1 0
a

n
v j

i
j i

v
v av

W

nV
φ

∞

= ==
Σ

∑∑
     (9) 

 
where:  ia denotes the i-th collision at which absorption occurs, 
   is the macroscopic absorption cross section in region v. avΣ
 

This estimator does well in highly absorbing media.  Its performance deteriorates 
in a highly scattering medium where few absorption events are expected to occur. 
 

4. COMPARISON OF DIFFERENT PRIMARY 
ESTIMATORS 

 
Flux at a point, next-event, variational Monte Carlo estimators, and estimators 

depending on the adjoint method have also been devised and are used in different 
circumstances. 



Estimators used in Monte Carlo particle transport calculations are of five basic 
types: 

a. The collision or Wasow estimator. 
b. The last-event or Forsyth Leibler, von Neumann-Ulam estimator. 
c. The track length estimator and its variations as analyzed by Gelbard, 

Ondis and Spanier. 
d. The flux at a point and next event estimators as analyzed by Kalos and 

Steinberg and by Albert. 
e. Estimators based on Maynard’s adjoint method.  These in turn can be any 

of the previous categories. 
 

The last event estimator differs from the collision estimator in that scoring occurs 
only when the particle history is terminated by absorption.  This implies the use of a 
terminating Markov chain model for the generation of the associated random walk.  This 
estimator is the same as the one introduced by von Neumann and Ulam, and generalized 
by Forsyth and Leibler to non-unit statistical weight particles. 
 The collision estimator scores at each collision.  It can be used for either 
nonabsorbing (the last event estimator is not defined in this case), or absorbing Markov 
chain models.  When an absorbing chain is used, this corresponds to the Wasow 
estimator.  One might expect the collision estimator to yield a lower variance than the 
last-event estimator; this is in fact verified in some practical cases, but in others the 
reverse situation occurs. 
 Both the last event and the collision estimators tend to suffer statistically in 
optically thin regions since few collisions occur there.  This statistical problem is 
improved by the use of the path length estimator as analyzed by Spanier and Gelbard.  
The methods proposed by Ragheb where the individual Neumann series terms of the 
solution are estimated are also superior in this case. 
 MacMillan has compared the variance of different estimators for simple 
problems. 
 All the previous estimators tend to suffer statistically as the volume of the 
detector region becomes small.  The next event or point-detector estimator is a candidate 
for problems where point values are needed as well as the Albert estimator and the 
adjoint method. 
 The next-event estimator tends to require a great deal of computational effort, 
since the attenuation from each collision site to the point detectors is required: this is 
quite a burden in problems with complex geometries.  When the detector point lies within 
a scattering medium, the theoretical second moment of its estimate may be infinite, even 
though the first moment is finite.  Kalos proposed a once-more collided estimator to 
remedy this infinite variance problem.  Steinberg and Kalos also proposed to bias the 
selection of collision points toward the point detectors. 
 The Albert estimator was initially applied to an adjoint integral equation, and in 
this sense it is an adjoint method estimator.  However, as reported by Spanier and 
Gelbard: “Albert himself did not point that out that, and he draws attention to a particular 
method of estimation and not to the equation itself.” 
 Maynard’s adjoint method deals directly with the adjoint transport equation and 
uses the reciprocity relation explicitly.  The adjoint method is an area of active research 



and code development, particularly whenever point cross sections or non-multigroup 
applications are addressed. 
 The most comprehensive surveys of estimators used in Monte carlo applications 
in particle transport have been exposed in the books by Spanier and Gelbard and by 
Carter and Cashwell. 
 
SECONDARY ESTIMATORS FOR REACTION RATES 
ESTIMATES 
 

1. INTRODUCTION 
 

We consider that the collision estimator was used with some region detectors to 
estimate reaction per unit volume or reaction densities per source particle in the form: 
 
  ( ), ( )v rv k v kF E Eχ=< Σ > [interactions/(cm3.source particle)] (10) 
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Σ =∑  is a response function of interest in region v, for energy 

group Ek [cm-1], 
 

Nvi is the nuclide number density of the considered element i in a compound or 
alloy or mixture of s components in detector region v [atom/(barn.cm)], 

 
( )i kEσ  is the microscopic cross section of the reaction of interest for element I, 

and energy group Ek [barns], 
 

v designates the region detector of interest, 
 

nt is the total number of source particles, 
 

nvi is the number of particles of energy Ei scattering in region v, 
 

Wj(Ek) is the statistical weight of the j-th particle at energy Ek scattering in region 
v, 

 
Vv is the volume of region detector v [cm3], 

 
 ( )  is the total macroscopic cross section for group Etv kEΣ k in region v [cm-1], 
 

G is the number of groups treated, 



 
 <,> denotes an inner product over the energy groups: k=1,2,3,  …  ,G. 
 

2. ESTIMATION OF PARTICLE FLUXES 
 

For the estimation of particle scalar fluxes, the response function  in Eq. 
10 is given as an input in the form of a step function in the energy groups and regions of 
interest, normalized by the source term, to obtain the volume averaged fluxes from the 
secondary estimator:  

( )rv kEΣ

 
   ( ), ( )v fv k v kE Eϕ χ=< Σ >  [particles/(cm2.sec)]  (11) 
 
where:  ( )fv kE SΣ = , 
 

S is the source term [source particles/sec]. 
 
 In a reactor calculation the source S can be estimated from the reactor power. 
 

3. ESTIMATION OF REACTION RATES 
 

To calculate reaction rates of interest such as tritium breeding ratios in a fusion 
blanket, which is the number of tritium atoms produced per source particle in each region 
v from neutrons reactions with Li6 and Li7 are estimated from: 
 
   ( ), (v tv k v kT E E )χ=< Σ >  [tritons/(source particle)] (12) 
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  Vv is the volume of region v [cm3], 
 
  1( )T kEσ  is the macroscopic cross section for the reaction Li6(n,He4)T3, 
 
  2 ( )T kEσ  is the macroscopic cross section for the reaction Li7(n,n’He4)T3. 
 

4. ESTIMATION OF RADIATION DAMAGE 
PARAMETERS 

 
 As an input to the materials calculations, the gas production rate are estimated 
from: 
 
  ( ), ( )v Gv k v kG E Eχ=< Σ > , [appm/year]    (15) 
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  CY = 3.15x107 is a conversion factor from seconds to years, 
 
 For hydrogen gas production: ( ) ( , ) ( , ) ( , )Gi k i i iE n p n D n Tσ σ σ σ= + +  
 
 For helium gas production: 3 4( ) ( , ) ( , )Gi k i iE n He n Heσ σ σ= + . 
 
 The atomic displacement rates are estimated from: 
 
  ( ), ( )v Dv k v kD E Eχ=< Σ >   [displacements/(atom.year)]  (16) 
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( )D kEν  is the number of displacements per primary knock-on of energy 

Ek, 
 

( )vpk kEσ  is the primary knock-on cross section from radiation damage 
theory [barns], 

 
  Nv is the atomic density of the metal matrix, in units of [atoms/(barn.cm)]. 
 

5. ESTIMATION OF DOSE AND HEATING RATES 
 

As an input to the dosimetry or thermal and hydraulic calculations, the neutron or 
gamma heating per source particle or the dose response can be estimated from: 
 
   ( ), (v Hv k v kH E E )χ=< Σ >  [MeV/source particle]  (13) 
 

where: 
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[eV.cm-1], 
 
 CH =10-6, is a conversion factor from eV to MeV, 
 
 Ki(Ek) is the Kerma factor in energy group k [barn.eV], for element i. 
 
 To get the average volumetric heating rates in region v one can use: 
 



   ( ), ( )v Qv k v kQ E Eχ=< Σ >  [MW/m3]    (14) 
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  CQ = 1.6021x10-13 , is a conversion ratio from MeV to Joules. 
 
 For neutron dosimetry calculations, cross sections libraries of Kerma factors have 
been compiled, such as the one by M. Abdou.  


