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1. INTRODUCTION 

The term "Transport Theory" is used to refer to the mathematical description of
the transport of particles, whether they are photons of electromagnetic radiation including
light photons, x-rays or gamma rays, gas molecules, cars in traffic,neutrons, or charged
particles such as electrons and protons, through a host medium. Some examples of
transport processes are:

1. Neutron distributions in nuclear reactors.
2. Shielding of radioactive sources.
3. Propagation of light through stellar matter.
4. Penetration of light through the atmosphere.
5. Traffic flow.
6. Gas dynamics.
7. Scattering of radar waves from the atmospheric turbulence.
8. Configuration of macromolecules.
9. Plasma dynamics.
We derive a general form of the Transport Equation and show its use in different

fields of science, with an emphasis on neutron and gamma ray transport.

2. PARTICLES DENSITY 

In particle transport, the random nature of particles motion allows us to use a field
of probability density functions or distribution functions, rather than a continuum
descriptions such as electric and magnetic fields, local temperature, charge and current
densities, mass density or local flow velocity.

The "Expected Particle Density" is defined as:

N(r,t)d3r = expected number of particles in d3r about r at time t.

This particle density can then be described by an appropriate differential equation.

3. PARTICLES DISTRIBUTION FUNCTIONS 

A classical point particle can be characterized by specifying the particle�s position
r and velocity v. Thus we define a "particle phase space density" as:

n(r,v,t)d3rd3v = expected number of particles in d3r about r with velocity in
d3v about v at time t.



Integrating over the velocity variable:

N(r,t) = vdtvrn 3),,(∫ (1)

If the particles are in thermal equilibrium at an absolute temperature T, then n(r,v,t)
becomes the Maxwell-Boltzmann distribution:

n(r,v,t)→ n0M(v) = kTmve
kT
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where n0 is the average number density of the particles.

It is common to normalize n(r,v,t) as follows:

f(r,v,t) = n(r,v,t)/N(r,t) = n(r,v,t)/[ ∫ n(r,v,t) d3v] (3)

which is a probability density function or distribution function that is normalized to unity:

∫ f(r,v,t) d3v = 1.

4. ANGULAR PARTICLES DENSITY 

To specify the direction of particles motion we use a vector ΩΩ in the direction of
the velocity vector v, as shown in Fig. 1:

Ω = v/|v| = sinθ cosϕ i + sinθ sinϕ j + cosθ k (4)

The particle phase space density can thus be defined as:

n(r,E, Ω,t)d3r dE dΩ = expected number of particles in d3r about r with
kinetic energy E in dE moving in the direction Ω within the solid angle
dΩ.

The differential solid angle is given by:

dΩ = dS/r2 = sinθ dθ dϕ (5)

Integrating over the velocity space variable:
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where dE = mv dv, since E = mv2/2



This is also called the �angular density� since it depends on θ and ϕ.

5. CURRENT DENSITIES 

The "phase space current density" function or "angular density" is defined as:

j(r,v,t) dS d3v = v n(r,v,t) dS d3v = expected number of particles that cross
an area dS per second with velocity v in d3v at time t.

Integration over the particle velocities, yields the particle "current density" shown in Fig.
2 as:

J(r,t) = ∫ vd)t,v,r(j 3 (7)

This is referred to, as "flux" is fields other than neutron transport, since:

J(r,t) dS = net rate at which particles pass through a surface area dS.

It is a vector quantity characterizing the net rate at which particles pass through a surface
oriented in a given direction.



The "partial current density" characterizes the rate at which particles flow through
the area in a given direction:

±J (r,t) ∫
±
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where se! is the unit normal to the surface, and the velocity integration is taken over those
particles moving only in the positive or negative directions.

We can write:

se! . J(r,t) = J+(r,t) - J-(r,t) (9)

Thus J(r,t) is a "net current density", since it can be constructed as the difference of the
partial current densities.

6. GENERIC FORM OF THE TRANSPORT EQUATION

We balance the various mechanisms by which particles can be gained or lost from a
volume of material according to the geometry of Fig. 3:

{Time rate of change of n} = {Change due to leakage through surface S}
+{Change due to collisions}
+{Sources}



Mathematically this is expressed as follows:
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where s(r,v,t) is a source density function.

If the choice of the arbitrary volume does not depend on time, then:
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We can also use Gauss' Theorem to convert the surface integral into a volume integral:
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since r and v are independent variables, and thus we can write:

rdtvrnvrdtvrnv 33 ),,(.),,(. ∇=∇

The balance condition thus becomes:
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Since V is arbitrary, the integrand itself is zero, thus:
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We can generalize the equation by using the �substantial derivative� relating the time rate
of change of the local particle density along the particle trajectory to the change in the
local density due to local collisions and sources:
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Thus the transport equation takes the form:
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Defining the macroscopic cross section for local interaction events:

∑(r,v) = N(r).σ(v) (14)



where: N(r) is the number density for the background medium,

σ(v) is the microscopic interaction cross section.

The "collision frequency" can be written as

v.∑(r,v) ,[cm/sec].[cm-1] = [1/sec]

The rate at which reactions occur per unit volume can be written as:

Reaction rate density = v.∑(r,v) .n(r,v,t),

and its units are:

[cm/sec][cm-1][particles/cm3] = [interactions/(cm3.sec)].

To describe the scattering process, we define the "collision kernel": ∑(r, v '! v)
as:

∑(r, v '! v) = ∑(r, v ') c(r, v ') f(r, v '! v) (15)

where f(r, v '! v) = probability that any secondary particle induced by an incident
particle with velocity v' will be emitted with velocity v in d3v at
r.

c(r, v ') = mean number of secondary particles induced by an incident
particle with velocity v' will be emitted with velocity v in d3v at r.

The collision term can thus be written as:

Thus:
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And the general form of the Transport Equation becomes:
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7. THE ANGULAR FLUX, OR PHASE SPACE FLUX 

The product v.n(r,v,t) arises so frequently that it was given a special notation:

ϕ(r,v,t) = v.n(r,v,t) = angular flux.

The velocity-integrated flux is given by:

ϕ(r,t) = ∫ ϕ(r,v,t) d3v = ∫ v n(r,v,t) d3v (18)

The tradition in nuclear applications of calling this quantity "flux" is misleading.
It is here a scalar quantity whereas other fluxes met with in mathematical physics are
vector quantities. Actually, the current density J(r,t) is closely related to the conventional
definition of the flux.

The units of both J(r,t) and ϕ(r,t) are identical: [particles/(cm2 sec)]. However,
J(r,t) is a vector quantity characterizing the net rate at which particles pass through a
surface oriented in a given direction, whereas ϕ(r,t) characterizes the total rate at which
particles pass through a unit area, regardless of orientation.

Thus J(r,t) is an appropriate quantity to estimate leakage or flow. ϕ(r,t) is more
suitable for estimating reaction rates.

The relationship between the angular flux and angular current density is:

j(r,v,t) = Ω.ϕ(r,v,t) (19)

In general, there is no direct relationship between ϕ(r,t) and J(r,t) since they are quite
different moments of the particle distribution function:

ϕ(r,t) = ∫ vdtvrnv 3),,( ,

J(r,t) = ∫ vdtvrnv 3),,( .

If we ignore the external force F, we can write the integro-differential form of the
Transport Equation in terms of the flux as:
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8. THE ONE-DIMENSIONAL FORM OF THE NEUTRON 
TRANSPORT EQUATION 

In Cartesian coordinates and one-dimension, the streaming term becomes
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Let:
Ωx = cos θ = µ

and consider no dependence on the azimuthal angle ϕ. Thus we can write the one-
dimensional transport equation in cartesian coordinates as:
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9. THE INITIAL AND BOUNDARY CONDITIONS TO THE 
TRANSPORT EQUATION 

Since a first order time derivative appears in the equation, the initial condition needed
is:

n(r = R, v ,t = 0) = n0(r, v), for all r and v

The commonly used boundary conditions are of three types:

1. Free surface boundary condition:

In this case, particles can only escape a body through the surface, but cannot
reenter it. Thus the density must vanish on the surface for all inward directions:

n(r = R, v ,t) = 0 , for all 0�. <sev

2. Reflecting boundary conditions:

The incoming density is reduced in this case by other albedo factor α:

n(r = R, v ,t) = α. n(r = R, v ,t), for all 0�. <sev

Such that:

srs evev �.�. =
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where α =1, this leads to �specular reflection� of the particles without loss.

3. Periodic Boundary Conditions:

The outgoing density on certain boundaries is equated with the incoming density
on other boundaries that are related by symmetric conditions. This leads to the
identification of computational unit cells.

4. Interface Boundary Conditions:

Since nothing of infinitesimal thickness can create or destroy particles we can write at
the interfaces:

n(r = R1, v ,t) = n(r = R2, v ,t) , for all v.

5. Infinity Boundary Condition:

The density should be well behaved at infinity:
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10. APPROXIMATIONS TO THE TRANSPORT EQUATION:

Seven independent variables: x, y, z, vx, vy, vz and t, are involved in the solution
of the Transport Equation. Moreover, the dependence of the collision cross section
∑(r,v'!v) on particle velocity v is extremely complicated because of the collision
dynamics. No computer is sufficiently large to solve the general Transport Equation.
Three ways are available to consider transport problems:
1. Approximating the form of the equation itself e.g. diffusion theory.
2. Consideration of model problems for which the form of the Transport Equation is
simple enough.
3. Use of numerical or statistical simulation techniques such as Monte Carlo methods.

Approximations to the geometry, energy dependence or angular dependence are
normally introduced to make it possible to solve the Transport Equation:
1. Geometrical Approximations:
a. Isotropic, homogeneous media.
b. Infinite media or half-spaces
c. One dimensional plane, spherical, or cylindrical geometry.
d. Periodic lattice symmetry.
2. Energy Approximations:
a. One-speed approximation.
b. Multigroup energy descriptions.
c. Expansion of the energy dependence in polynomial.
d. Simple models of the collision kernels.
3. Angular dependence approximations:



a. Isotropic sources.
b. Isotropic scattering
c. Expansion of collision kernels in Legendre Polynomials in angle.

11. THE NEUTRON TRANSPORT EQUATION:

The neutron phase space density is taken as n(r,v,t) and ∑(r,v) is taken as the
microscopic cross-section characterizing neutron-nuclear interactions. The Transport
Equation then takes the form:
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The initial and boundary conditions are:
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In fission reactor systems, the source term takes the form:
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where ν(E') is the average number of neutrons released per fission,

χ(E') is the energy distribution or spectrum of the fission neutrons.

The fission spectrum is given by:

χ (E) = Ee E 29.2sinh453.0 0361− (24)

Three categories of problems present themselves in the solution of this equation:

1.Source Problems:
a. Sources in infinite media.
b. Behavior of flux near a free surface or the Milne problem.
c. Albedo problems
d. Finite geometry problems

2. Criticality problems:
These involve the system composition and/or geometry such that the fission neutrons
production just balance neutron absorption and leakage to yield a time-independent
solution to the Transport Equation.
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3. Time - dependent problem:
a. Pulsed- neutron problems: initial value problems.
b. Neutron Wave problems: response to time-modulated sources.

12. THE PHOTON TRANSPORT OR RADIATIVE TRANSFER 
EQUATION:

To describe the transport of low energy photons, the photon energy intensity is
defined in terms of the photon flux cn(r,v,t) and photon energy (hν) as :

I(r,Ω,t) = (hν) cn(r,v,t) (25)

The Radiative Transport Equation becomes:
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This can be simplified for local thermodynamic equilibrium as:

][.1 ISKI
t
I

c
−=∇Ω+

∂
∂ ρ (27)

where the emission term is given by:
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where h is Planck�s constant.

Some example problems are:
a. High energy gamma transport, deep penetration and shielding.
b. Stellar atmosphere problems: the Milne problem.
c. Radiation penetration into stellar atmosphere: Albedo problem.
d. Radiative transfer in plasmas.

13. HIGH ENERGY, CHARGED PARTICLE TRANSPORT 
EQUATION:

Two processes characterize this phenomenon:



a. The strong but infrequent collisions of the particles with heavy ions, with little energy
transfer.
b. Frequent weak collisions with atomic electrons, giving rise to very irregular
trajectories.

One starts by using an energy-independent description to account for elastic
collisions with heavy ions:
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The frequent, weak collisions are introduced through a continuous slowing down theory.
In this case one knows the energy loss over a given path length ξ: dE/dξ.
Using the relationship:

dξ = vdt (29)

The independent variables in the last equation are transformed to yield:
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Examples of encountered problems are:
a. Shielding against charged particle radiation on space missions.
b. Electron plasma production using electron beams.

14. THE BOLTZMANN TRANSPORT EQUATION FOR GAS 
DYNAMICS:

Here we have a motion of gas molecules colliding with each other:
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The primes indicate the molecular velocities prior to the collision event and n(v) is a
shorthand for n(v,r,t). This equation contains a quadratic nonlinearity.

The equation can be linearized for small disturbances around the equilibrium
distribution:

n0(v) = n0M(v),

by defining:

n(r,v,t) = n0(v) + n1(r,v,t) , |n1| << |n0|



If only first-order terms in the perturbation are retained after substitution into the
Boltzmann Equation, we get the Linearized Boltzmann Equation in the perturbation n1:
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If the term n0(v).σ(Ω,|v1 - v|) is identified as the scattering kernel ∑s(v'! v), the equation
takes the form of the Neutron Transport Equation.

Some examples of problems treated are:
1. Shock wave propagation.
2. Sound wave propagation.
3. Steady flow, gas-surface interaction, heat transfer.

15. IONIZED GASES AND PLASMAS TRANSPORT EQUATION:

The long-range nature of Coulomb Interaction must be accounted for. Using the
Lorentz equation for an electric field E and magnetic field B:

F = q (E + v X B) (33)

Thus, for electrons (q=-e) the Transport Equation becomes:
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In a plasma, which is an ionized gas with a Debye length small compared to the
system size, collective motions are very important, and E and B must be determined
using Maxwell's equations.

For the study of electrostatic oscillations in the electron density, one ignores the
collision term and writes:
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where E(r,t) is determined by Poisson's Equation:
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This equation, in which the collision term is ignored, and the electric field is
explicitly accounted for, is known as Vlasov's equation and forms the basis of a majority
of plasma physics applications.

Some of the problems treated are:
a. Propagation of shock waves in plasmas.
b. Plasma turbulence studies.



c. Wave propagation in plasmas.
d. Instabilities in n(r,v,t), also called microinstabilities.

16. DISCUSSION 

The Transport equation encompasses many fields in science and engineering. A
great deal of effort goes into solving it under different conditions and approximations.
Some forms of the equation lends itself to different methods of approximation and
solution. The integro-differential form of the equation is suitable for finite difference and
approximate analytical methods approaches, whereas its form as a n integral equation
lends itself to statistical integration methods such as Monte Carlo.


