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INTRODUCTION 
 
 The Monte Carlo simulation of different phenomena requires the sampling of the 
distributions that represent their behavior. Mastering the process of sampling these 
distributions allows for the simulation of any process one can think of. 

The concepts of discrete and continuous random variables, probability density 
function (pdf), and cumulative distribution function (cdf) will be introduced. Next some 
relevant probabilistic quantities such as the mean value and the variance will be 
introduced. Then methods of sampling discrete and continuous probability density 
functions will be exposed. When analytical forms of the distributions are not readily 
available, the rejection method is shown to provide an approach for sampling difficult 
distributions. 

It is important to thoroughly analyze the sampling process, since when variance 
reduction is attempted; this would involve modifying the sampling process with the 
objective of effectively simulating complex processes and phenomena. 
 
THE CONCEPT OF A RANDOM VARIABLE 
 
 In practice, the term “random variable” or “stochastic variable” is used to 
emphasize the fact that one does not exactly know what specific value this kind of 
variable will take at a given occurrence. However the probabilities of different 
occurrences are usually known. Such a variable is shrouded by the kind of uncertainty 
designated as “randomness” that probability theory tries to estimate mathematically in an 
exact, surely not random way. Other forms of uncertainty exist in nature such as 
“fuzziness” that possibility theory also tries to estimate in an exact mathematical, surely 
not fuzzy, way. 
 Random variables are encountered in diverse fields of science and engineering 
that Monte Carlo simulation can handle. Examples of random variables, among many 
others, are: 
1. The number of cosmic ray particles falling on an area of the earth’s surface within 

a certain time interval. 
2. The number of phone calls arriving at a telephone exchange in a certain amount of 

time. 
3. The deviation of the point of impact of a shell around the center of its target. 
4. The velocity of a gas molecule in a gas, particle in a plasma, or neutron in a shield 

or a nuclear reactor. 
5. Electrons energies in a conductor or a superconductor. 
6. Number of photons of light, x-rays, or gamma rays falling on a surface. 
7. Velocity of fluid particles in a turbulent flow in a pipe. 
8. Temperature distributions in a car, plane or ship engine. 



Mathematically speaking the last examples share several similarities: 
1. In each case we have to deal with a quantity of interest describing the 

phenomenon under study, 
2. Under the effect of random circumstances, each quantity can take a variety of 

values, 
3. One cannot state a priori what value the quantity of interest will assume, since it 

varies in a random fashion from one instance to the other. 
To describe a random variable we must: 
First:   Know the values that it can assume. 
Second: Know how often, or with what probability, it assumes these values, 

under a sufficiently large number of trials. This is possible by 
means of a “probability density function,” abbreviated as pdf, of 
the random variable. 

 
PROBABILITY DENSITY FUNCTIONS 
 
 Two situations will present themselves to us: discrete and continuous random 
variables. 
 If a random variable ξ assumes the discrete values: x1, x2, x3, …, xn; it can be 
specified by the probability distribution function: 
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where: p1, p2, p3, …, pn are the probabilities of occurrence of the values x1, x2, x3, …, xn. 
 This probability density function pi can be formally expressed by the expression: 
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The outcome values x1, x2, x3, … , xn are arbitrary, but the probabilities pi must satisfy 
the two conditions: 
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 As an example one can consider the random variable representing the flipping of 
a coin, with the possible outcomes heads (H) and tails (T) and their associated 
probabilities p(H)=0.5, p(T)=0.5: 
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 Another example is the random variable representing the points obtained in 
throwing a single die: 
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Such a discrete probability density function is shown in Fig. 1. 
 

 
 

Fig. 1: Discrete probability density function (pdf) and the associated cumulative 
distribution function (cdf) for the single die throws random variable. 

 
 Another example that is analogous to a five-faced die is the random variable that 
represents the expected number of neutrons outgoing a collision with a nucleus. One can 
derive the probability density function for this random variable as follows.  

The total macroscopic cross section for a neutron colliding with a nucleus is: 
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where: ∑t is the total macroscopic cross section, 

∑s is the macroscopic scattering cross section, 
∑n,2n is the macroscopic (n,2n) reaction cross section, 
∑n,3n is the macroscopic (n,3n) reaction cross section,\ 
∑c is the macroscopic capture cross section, 
∑f is the macroscopic fission cross section. 

 
Dividing by ∑t one can derive the probability density function for the different reactions 
as: 
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Equation 8 satisfies the conditions on the probabilities imposed by Eqns. 3 and 4. 

Using the pdf of Eqn. 8, one can now express the random variable representing a 
neutron collision as: 
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where: νf is the average number of neutrons outgoing a fission reaction. 
 
CUMULATIVE DISTRIBUTION FUNCTION (CDF) 
 
 The probability density function of Eqn. 2 is associated with a cumulative 
distribution function (cdf) defined as: 
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As a result of the condition in Eqn. 4: 
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 In the case of a continuous random variable, we must define the interval [a,b] of 
its variation, and its probability density function p(x) can be defined by the equation: 
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The probability density function p(x) must satisfy the two conditions: 
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 A cumulative distribution function is similarly defined over a continuous random 
variable as: 
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As an example, the pdf for a distance to the next collision, or the transport kernel of a 
particle diffusing in an infinite medium with a total macroscopic cross section is: tΣ
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and its cdf is: 
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The pdf and cdf are shown for this case in Fig. 2. 
 
MATHEMATICAL EXPECTATION OF A RANDOM VARIABLE 
 
 The objective of a Monte Carlo simulation is normally the determination of the 
mathematical expectation, mean value, or expected value of a given random variable. In 
the discrete random variable case, the mathematical expectation or first moment is given 
by: 
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by virtue of the normalization condition of Eqn. 4. 
 For the continuous random variable case, the summation is replaced by an 
integral, yielding: 
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by use of the normalization condition of Eqn. 13. 

 
Fig. 2: Probability density function (pdf) and cumulative distribution function (cdf) 
for the distance to the next collision of a particle diffusing in an infinite medium of 

total macroscopic cross section tΣ . 
 
 EXAMPLE 1 
 
 As an example, considering the discrete die throwing random variable, we can 
estimate its mean value, mathematical expectation or first moment as: 
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 EXAMPLE 2 
 
 As another example, considering the continuous particle diffusion random 
variable, we can estimate its mean value, mathematical expectation or first moment as: 
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which as expectedc suggests that the average distance traveled by the particle is equal to 
the inverse of the macroscopic total cross section, which is in turn is equal to the mean 
free path tλ  of the particle in the medium with macroscopic total cross section . tΣ
 
THE VARIANCE OF A RANDOM VARIABLE 
 
 The variance of a random variable ξ  is defined as: 
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which is the expected value of the square of the deviation of the random variable from its 
mean value. 
 The last equation can be transformed in the following way: 
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Since: 
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we can write: 
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This second expression of the variance is equivalent to the one in Eqn. 19, and both 
equations can be used for the estimation of the variance. 



 
EXAMPLE 3 
 
 For the die throwing random variable, the variance can be estimated according to 
Eqn. 22 as: 
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SAMPLING DISCRETE PROBABILITY DENSITY FUNCTIONS 
 
 Two situations arise in Monte Carlo simulations where one needs to sample 
discrete probability density functions: 
1. When the density functions themselves are discrete. Examples of this situation are 
the single die throwing random variable, the number of neutrons outgoing a certain 
reaction, discrete scattering direction cosine of particles, or multi-group cross sections 
data in particle transport calculations. 
2. When the probability density functions are too complex, and one then needs to 
simplify their treatment by discretizing them and storing the discrete values in table form 
for sampling.  

The following steps are usually followed: 
1. The sampling of a discrete probability density function requires the construction 
of a cumulative probability density function (cdf) as shown in Fig. 1, and storing its 
values in table form. 
2. A pseudo random number: 
 
 [0,1]ρ ∈  
 
is sampled over the unit interval. 
3. The cumulative distribution function is inverted by searching its values for the 
position of the sampled random variable. 
If: 
 

1 2 1 1 2... ...i ip p p p p pρ−+ + + < ≤ + + +  
 
then i is chosen and the corresponding outcome xi is taken as a sample. 

For instance in Fig. 1: 
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this results in i = 3, accordingly the inversion process yields xi = 3 as the sampled value 
of x. 
 A procedure displaying the sampling of the coin flipping random variable is 
shown in Fig. 3. From the probability density function a cumulative distribution function 
is constructed, and is the sampled using a sequence of pseudo random numbers generated 
over the unit interval. The generated sample is stored to a file and reconstructed from the 
sample data to check the validity of the procedure and is shown in Fig. 4. It can be 
noticed that the correct probability density function is generated as we increase the 
number of trials to fully sample the sample space. 
 
! coin_flipping.for 
! Simulating the process of flipping a coin 
! M. Ragheb, Univ. of Illinois 
 program coin_flipping 
 dimension x(2), pdf(2), cdf(2), freq(2) 
 integer :: trials = 10000000 
 real :: c=0.5 
 real pdf,cdf,freq,xtrials 
 xtrials=trials 
! Initialize frequency distribution 
 do i=1, 
  freq(i)=0.0 
 end do 
! Initialize possible outcomes of random variable 
! Heads, i=1 
! Tails, i=2 
 do i=1,2 
  x(i)=i 
 end do 
! Initialize probability density function 
 do i=1,2 
  pdf(i)=c 
 end do 
! write(*,*) pdf 
! Generate cumulative distribution function 
 cdf(1)=pdf(1) 
 cdf(2)=pdf(1)+pdf(2) 
! write(*,*) cdf 
! Open output file   
 open(44, file = 'random_out') 
! Sample random variable and accumulate scores in frequency distribution 
 do i= 1, trials 
  call random(rr) 
  if(rr.LE.cdf(1))then  
   freq(1)=freq(1)+1.0 
  end if 
  if((rr.GT.cdf(1)).AND.(rr.LE.cdf(2)))then 
   freq(2)=freq(2)+1.0 
  end if 
 end do 
! Normalize frequency distribution 
 do i=1,2 
  freq(i)=freq(i)/xtrials 
 end do 



! Write results to output file 
 do i=1,2 
  write (44,100) x(i), freq(i) 
  write(*,*) x(i),freq(i) 
 end do 
100 format (2e14.8) 
 end 
 

Fig. 3: Procedure for the Monte Carlo Simulation of coin flipping. 
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Fig. 4: Results of increased number of trials for the Monte Carlo Simulation of coin 
flipping. Heads occurrences are represented by 1, and tails are represented by 2. 

 
 We also show a procedure for the sampling of the random variable representing 
the throw of a single die in Fig. 5. Notice that the construction of the cumulative 
distribution function follows directly from the procedure used to sample the coin-flipping 
problem. Similarly, increasing the number of trials leads to a correct reconstruction of the 
actual probability density function as shown in Fig. 6. 
 



! die_throwing.for 
! Simulating the process of throwing a single die 
! M. Ragheb, Univ. of Illinois 
 program dice_throwing 
 dimension x(6),pdf(6),cdf(6),freq(6) 
 integer :: trials = 1000000 
 real :: c=1.0/6.0 
 real pdf, cdf, freq 
! Initialize frequency distribution 
 do i=1,6 
  freq(i)=0.0 
 end do 
! Initialize possible outcomes of random variable 
 do i=1,6 
  x(i)=i 
 end do 
! Initialize probability density function 
 do i=1,6 
  pdf(i)=c 
 end do 
! write(*,*) pdf 
! Generate cumulative distribution function 
 cdf(1)=pdf(1) 
 do i=2,6 
  cdf(i)=cdf(i-1)+pdf(i) 
 end do 
! write(*,*) cdf 
! Open output file   
 open(44, file = 'random_out') 
! Sample random variable and accumulate scores in frequency distribution 
 do i= 1, trials 
  call random(rr) 
  if(rr.LE.cdf(1))then  
   freq(1)=freq(1)+1.0 
  end if 
  do j=1,5 
   if((rr.GT.cdf(j)).AND.(rr.LE.cdf(j+1)))then 
    freq(j+1)=freq(j+1)+1.0 
   end if 
  end do 
 end do 
! Normalize frequency distribution 
 do i=1,6 
  freq(i)=freq(i)/trials 
 end do 
! Write results to output file 
 do i=1,6 
  write (44,100) x(i), freq(i) 
  write(*,*) x(i),freq(i) 
 end do 
100 format (2e14.8) 
 end  
 

Fig. 6 : Procedure for the Monte Carlo Simulation of die throwing. 
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Fig. 7 : Frequency distribution for the increased number of trials for the Monte 
Carlo Simulation of the die throwing random variable. 

 
INTERPOLATION OF SAMPLED DATA 
 
 When tabulated data is used as an approximation to an otherwise continuous 
distribution, interpolation between the tabulated values can improve the sampled values. 
The interpolation process can be undertaken in the following way: 
1. The interval xi in which the random variable lies is determined as in the case of 
discrete variables.  
2. Linear interpolation can be used to get an improved value of the variable x from: 
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The interpolation process is shown in Fig. 8 by considering the two similar triangles ABE 
and CDE with: 
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Equation 23 leads to an interpolated value: 
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 Table lookout helps us reduce the number of operations needed for sampling a 
complicated function, but places a burden on the fast storage capacity. A balance must be 
struck between the needed sampling accuracy and the storage capacity requirements 
 

 
Fig. 8: Linear interpolation over a cumulative distribution function (cdf) in 

histogram or table form. 



 
SAMPLING CONTINUOUS DISTRIBUTIONS BY INVERSION 
 
 The probability that the random variable x has a value between x and x + dx is 
p(x)dx. The function p(x) is called the probability density function (pdf) or the 
differential distribution function. The probability C(x) that the random variable x’ is less 
than x is called the cumulative distribution function (cdf) or integral distribution function. 
 The selection of a random variable distributed according to a given probability is 
of central importance in Monte Carlo simulations. Let ρ  be a pseudo random number 
uniformly distributed over the unit interval: 
 
 [0,1]ρ ∈ . 
 
If we equate the cumulative distribution function to the generated pseudo random number 
such that: 
 

( )C x ρ= ,     (25) 
 
then for each ρ  there is a corresponding x, and the variable x is distributed according to 
p(x), and we can obtain x from the simple inversion of the cumulative distribution 
function: 
 

1( )x C ρ−=      (26) 
 
This approach yields analytical expressions suitable for the sampling process and is 
normally used whenever the probability density functions lend themselves to simple 
mathematical manipulations. 
 
SAMPLING PARTICLE TRANSPORT 
 

We have deduced the cumulative distribution function for the transport kernel of a 
particle diffusing in a medium in Eqn. 16 as: 
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To generate values of x distributed according to the given cumulative distribution 
function, it is equated to a pseudo random number then inverted according to Eqns. 25 
and 26: 
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Since ρ  is distributed in the same way as (1- ρ ) over the unit interval we could save a 
computational step by using the relationship: 
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where now we are generating n sampled points using a sequence of n pseudo random 
numbers. 
 
! distance.for 
! Simulating the process of a particle diffusing in a medium 
! M. Ragheb, Univ. of Illinois at Urbana-Champaign, 2/17/2003. 
! probability density function: 
! sigma_total*exp(-sigma_total*x) 
! distance between collisions: 
! x = - mean_free_path * ln (rho) 
! where rho is a random number over the interval [0,1] 
! M. Ragheb, Univ. of Illinois 
 program distance 
 dimension x(100), freq(100) 
 real :: sigma_total = 1.0 
 integer :: trials = 100000 
 real x,dist,freq,mean_free_path 
! Calculate mean_free_path 
 mean_free_path = 1.0/sigma_total 
! Initialize frequency distribution 
 do i=1,100 
  freq(i)=0.0 
 end do 
! Initialize distance_travelled bins in mean free paths 
! width=1.0 
! here in tenths of mean free paths 
 width=0.1 
! here in hundredths of mean free paths 
! width=0.01 
 do i=1,100 
  x(i)=i * mean_free_path * width 
 end do 
! open output file   
 open(44, file = 'random_out') 
! Sample distances travelled and accumulate scores in frequency distribution 
 do i= 1, trials 
  call random(rr) 
  dist = - mean_free_path * log (rr) 
  if(dist.LE.x(1))then  
   freq(1)=freq(1)+1.0 



  end if 
  do j=1,99 
   if((dist.GT.x(j)).AND.(dist.LE.x(j+1)))then 
   freq(j+1)=freq(j+1)+1.0 
   end if 
  end do 
 end do 
! Normalize frequency distribution 
 do i=1,100 
  freq(i)=freq(i)/trials 
! turn into histogram 
  freq(i)=freq(i)/width 
 end do 
! Write results to output file 
 do i=1,100 
  write (44,100) x(i), freq(i) 
  write(*,*) x(i),freq(i) 
 end do 
100 format (2e14.8) 
 end 
 
Fig. 9: Procedure for the Monte Carlo simulation of particle transport in a medium. 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

9.
0

10
.0

Distance  x [mfp]

p(
x)

 
 



Fig. 10: Sampled probability density function for the simulation of a particle 
diffusing in a medium with macroscopic total cross section =1 [cm]-1. 

 
 A procedure for the sampling the transport kernel of a particle diffusing in a 
medium is shown in Fig. 9.  Notice the simpler structure of the algorithm compared to the 
case of a discrete distribution, where the construction of a table of discrete values and a 
process of table lookout and search is needed.  In Fig. 10, the sampled distribution is 
shown for a unit macroscopic total cross section and mean free path. 
 
REJECTION SAMPLING METHOD 
 
 If a bounded function f(x) cannot be easily inverted analytically, it can be sampled 
using the rejection method, due to von Neumann. If f(x) vanishes outside the interval 
[a,b], and we wish to construct samples from the density f(x), the following steps are 
used, with reference to Fig.11: 
 

 
Fig. 11: Sampling by rejection the probability density function f(x). 

 



1. Determine the maximum value M that the function can reach over the interval 
[a,b]. 
2. Generate a pair of pseudo random numbers ρ1 and ρ2. 
3. Interpret the point: 
 

{ }21 ),( ρρ Maba −+     (28) 
 
 as a point in the rectangle with base (b-a) and height M. 
4. If this point falls below the graph of f(x): 
 

)]([ 12 abafM −+≤ ρρ ,   (29) 
 
 then f [a + ρ1(b-a)] is accepted as a valid sample from f(x). 

5. If the point does not fall below the graph of f(x), reject the sample and repeat 
the sampling process until a sample has been determined to be valid. 

The efficiency of such a technique, as measured by the fraction pairs of pseudo 
random numbers (ρ1,ρ2) which are not rejected, is just the ratio of the area under the 
curve f(x) to the area of the enclosing rectangle. 
 To prove that this technique indeed samples the probability density function f(x), 
we recognize that the probability of a sampled point to fall below the curve f(x), and 
hence not to be rejected, is equal to the ratio of the areas: 
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The probability for the sampled point to fall below the curve in the interval: 
 
     c < x <d, 
 
is also equal to: 
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Hence the fraction of sampled values in the interval [c,d] among all sampled points is the 
ratio: 
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which proves that we are sampling in this way the probability density function f(x). 
 
! fission_spectrum.for 
! Sampling the fission spectrum 
! probability density function: 
! x(e)=0.453*exp(-1.036E)*sinh(sqrt(2.29*E)) 
! Sampling using the Rejection Method 
! M. Ragheb, Univ. of Illinois 
! program fission 
 dimension e(100),freq(100),cumulative(100) 
 integer :: trials = 1000000 
 real x, y, max, e, freq, score, cumulative                          
! Calculate maximum value of pdf at most probable energy e= 0.73 MeV 
 max = (0.453*exp(-1.036*0.73))*(exp(sqrt(2.29*0.73))- 
     & exp(-sqrt(2.29*0.73)))/2.0 
 write(*,*) max 
 total_score = 0.0 
! Initialize frequency distribution 
 do i=1,100 
  freq(i)=0.0 
 end do 
! Initialize energy bins in MeV/10 
 do i=1,100 
  xi=i 
  e(i)=xi/10.0  
 end do 
! open output file   
 open(44, file = 'random_out') 
 
! Sample distribution using rejection method 
 do i= 1, trials 
! Sample x coordinate from zero to 10 MeV 
  call random(rr) 
  x = 10.0*rr 
! Estimate pdf at sampled x coordinate 
        pdf = (0.453*exp(-1.036*x))*(exp(sqrt(2.29*x))- 
     & exp(-sqrt(2.29*x)))/2.0 
! Sample y coordinate 
  call random(rr) 
  y = max*rr 
! Compare value of pdf to y coordinate, and score 
  if(y.LE.pdf) then  
   score = 1.0 
   total_score=total_score+1.0 
  else if(y.GT.pdf) then  



   score = 0.0 
  end if 
! Construct sampled probabibility density function 
  if(x.LE.e(1))then  
   freq(1)=freq(1)+score 
  end if 
  do j=1,99 
   if((x.GT.e(j)).AND.(x.LE.e(j+1)))then 
   freq(j+1)=freq(j+1)+score 
   end if 
  end do 
 end do 
! Normalize frequency distribution 
 do i=1,100 
! Regerenerate probability density function  
  freq(i)=freq(i)/total_score 
 end do 
! Regenerate cumulative distribution function 
 cumulative(1)=freq(1) 
 do i=2,100 
  cumulative(i)=cumulative(i-1)+freq(i) 
 end do 
! Write results to output file 
 do i=1,100 
  write (44,100) e(i),freq(i),cumulative(i) 
  write(*,*) e(i),freq(i),cumulative(i) 
 end do 
100 format (3e14.8) 
 end 
 

Fig. 12: Procedure using the rejection method for sampling the fission neutron 
spectrum or Watt’s curve. 
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Fig. 13: Probability density function and cumulative distribution function of the 

neutron fission spectrum: Watt’s curve, using the rejection sampling method. 
 
 
 As an example of the use of the rejection method for sampling probability density 
functions that are not discrete and whose analytical expressions are difficult to invert 
analytically, we consider the sampling of the fission spectrum curve also designated as 
the Watt’s curve. This curve is used in particle transport simulations to sample the energy 
of a neutron emerging from the fission process.  

A procedure showing the application of the rejection method is displayed in Fig. 
12, and uses the available expression for the fission spectrum. The result of the sampling 
process is displayed in Fig. 13. Both the probability density distribution function and the 
cumulative distribution function are shown in this graph. 
 
PREVENTING BIAS IN SAMPLING 
 

An unbiased sampling scheme can be devised to eliminate the bias from a 
sampling scheme that is suspected of being biased. A twist of the rejection method can be 
used to eliminate bias in sampling. Considering the Monte Carlo simulation of the 
random variable of flipping a coin: 
 



    :
( ) ( )unbiased coin

H T
p H p T

ξ
⎛
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⎞
⎟     (32) 

 
where: H, T refer to heads and tails, respectively, p(H)=p(T)=0.5 are the probabilities of 
obtaining H or T for an unbiased coin. 
 If a suspicion exits that the coin is biased, an unbiased sampling method can be 
devised as follows: 

1. Coin is flipped twice. 
2. If two similar consecutive outcomes are obtained, HH or TT, the sample is 

rejected. 
3. The coin is flipped twice again. 
4. If two consecutive outcomes are different, the sample is accepted as H if the 

outcome is HT, and accepted as T for a TH outcome. 
5. The probabilities of these two consecutive incomes HT or TH are the same, even 

if the coin is biased. 
For instance let us consider the situation of a biased coin with: 

 
    5.0)()( ≠≠ TpHp      (33) 
 
 The probability of obtaining any two consecutive outcomes a AND b is expressed 
by the probability theory multiplication principle: 
 
    )|().()|().()( bapbpabpapaANDbp ==   (34) 
 
where: is the conditional probability of obtaining x given that y has occurred. )|( yxp
 If the occurrences of x and y are independent, then: 
 
    )()|( xpyxp =      (35) 
 
 If the two events a, b are independent, it ensues that: 
 
    )().()().()( apbpbpapaANDbp ==    (36) 
 

Now we consider the random variable representing a biased coin: 
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For independent occurrences of H, T, application of the multiplication principle, two 
consecutive values of HH, TT yield the biased results with unequal probabilities: 
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Whereas, two different independent consecutive occurrences of H, T yield an unbiased 
result with equal probabilities: 
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This shows that an unbiased sampling scheme can be devised to eliminate the bias 

from a sampling scheme that is suspected of being biased. 
 
REGRESSION TO THE MEAN AND THE GAMBLER’S FALLACY 
 
 In the sampling of the coin flipping random variable, even if the sampling scheme 
is unbiased, some odd occurrences can occur. Similar notions exist for roulette wheels, 
dice, investments, sports scores, corporate earnings and weather forecasting. 

A surprising number of runs of consecutive values of H or T do in fact occur. If 
one keeps track of the proportion of time that the number of occurrences of H exceeds or 
is exceeded by the number of occurrences of T, one would notice the counter intuitive 
observation that it is rarely close to the expected value of one half. As a ratio, coins 
behave nicely and in fact, the ratio of H/T tends in the limit of a large number of samples 
toward one half. On the other hand, in terms of absolute numbers, they behave badly, 
where the difference between the number of H and T occurrences could get bigger as we 
continue flipping the coin, and the switching between leading H to T or vice versa 
becomes rare. 
 This leads people to think that the greater the deviation from the mean, the greater 
the restoring force toward the mean, as if there were a spring or rubber band bringing 
back the observations towards the expected mean. This gambler’s fallacy is the mistaken 
belief that because a long string of H’s has occurred that there exists a greater probability 
for T to occur on the next flip, or vice versa. This suggests to a gambler that he should bet 
on the occurrence of H after a string of T occurrences, or bet on T after a string of H 
occurrences. However, the coin does not know anything about any mean or any rubber 
band. It does not respond to the gambler’s wishes either, and cannot read his mind. If it 
landed as H more than T, or more T than H, this difference is as likely to grow, as it is 
likely to shrink. 
 This gambler’s fallacy should be distinguished from the phenomenon of 
regression to the mean, which is a true phenomenon. If the coin is continued to be flipped 
a large number of times, it is more likely that the proportion of H to T will approach the 
mean value of 0.5 in the long run. 
 Random fluctuations appearing as clumps, runs and patterns are a characteristic of 
random sequences, and should be expected to occur. They have been studied, and can to 
an extent be evaluated and predicted. 
 
PROBLEMS 
 
1. Estimate the variance of the random variable representing the diffusion of a 
particle in an infinite medium with macroscopic total cross section tΣ . 



2. Modify the coin flipping procedure to display the ratio of heads to tails as a 
function of the number of trials N. Calculate the value after each random number 
generation, and discuss the patterns that you can observe. 
3. Modify the procedure for the simulation of die throwing to calculate the mean 
value or mathematical expectation of the outcomes, and its variance. Plot the results as a 
function of the number of throws N. 
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Compare the sampled mean value and variance to their exact theoretical values. 
4. Study the effect of the width of the bins in which the frequency of the sampled 
distribution is scored, on the correct representation of the sampled probability density 
function. For instance, in the particle diffusion simulation, take the width of the bin as 
one, one tenth, and one hundredth mean free path. What do you observe in these cases? 
5. Compare the generated probability density functions for particle diffusion in 
media with different diffusion media. Take for instance, the value of the total 
macroscopic cross section to be: 

10.1, 1.0, 10.0 [ ]t cm −Σ = . 
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