#### **Power Density**

- Conductivity of electrodes (ionic and electronic)
- Ionic conductivity of the electrolyte
- Porosity of the electrodes
- Electrochemical potential
- Presence of supercapacitor effect (good for short time pulsing)

### **Power Density**

#### Supercapacitor effect

- 1. Good for power pulsing on the second or minute level
- 2. Typically detrimental for power density on the hour level
- 3. Can function as a built-in supercapacitor



**CHARGED** 

#### Cycle, and cycle life

- Unique requirement on a secondary battery
- Depends on DOD (depth of discharge)
- DOD: expressed in percentage of the nominal capacity
- Cycle life varies greatly with different battery technology
- Cycle might have other unexpected effect such as the "memory effect"

# Factors affecting cycle & life

- Ionic conductivity of electrolyte
- Preferably without solid state ionic diffusion
- Electrode materials of small surface tension (soft metals, etc.)
- Fuel cell type electrodes where the electrode itself is not changed before and after the reaction (catalytic electrode)

# Factors affecting cycle & life

- Electrolyte is preferably aqueous (water based)
- Properly tune the surface tension of the electrolyte and electrode (avoid dendrite formation)
- Dendrite formation is a matter of wetting the surface or not (kind of)
- Solid state diffusion is to be avoided as possible. Example

LiCoOx vs NiOOH



#### Comparison of some batteries

|                                                | Ag-Zn  | Ni-Cd  | Ni-H <sub>2</sub> | Ni-MH | Li-ion             |
|------------------------------------------------|--------|--------|-------------------|-------|--------------------|
| Anode                                          | Zn     | Cd     | H <sub>2</sub>    | LaNi5 | Li intercalated C  |
| Cathode                                        | AgO    | NiOOH  | NiOOH             | NiOOH | LiCoO <sub>2</sub> |
| Electrolyte                                    | КОН    | КОН    | KOH               | кон   | Li salt in PC EC   |
| Aquatic?                                       | yes    | yes    | yes               | yes   | no                 |
| Active ions in electrolyte                     | OH-    | OH-    | OH-               | OH-   | Li+                |
| Ion diffusion rate in electrolyte              | fast   | fast   | fast              | fast  | slow               |
| Need solid-state<br>diffusion in<br>electrode? | no     | no     | no                | yes   | yes                |
| Corrosive Electrolyte?                         | yes    | yes    | yes               | yes   | no                 |
| Catalytic Anode?                               | no     | no     | yes               | no    | no                 |
| Catalytic Cathode?                             | no     | no     | no                | no    | no                 |
| Energy density<br>(W·Hr/kg)                    | 90-100 | 40~50  | 50-60             | 60-80 | 100-150            |
| Cycle life (CL)                                | <30    | >2000  | >10000            | ~500  | ~500               |
| CL@DOD 20%                                     | 100    | >10000 | >130000           | ~3000 | ~4000              |
| CL @DOD 90%                                    | 30     | >1000  | >20000            | 500   | 500                |
| Charge Time                                    | 2      | 1      | 1.5               | 3~4   | 4                  |

#### Cost of batteries

- Largely determined by the cost of raw materials
- Geological abundance is an important factor
- The abundance is given by nuclear chemistry – each element as synthesized in the nucleosynthesis process
- Extraction (mining) ease is given by the terrestrial geology (for now)

#### Cost of some raw materials (\$/ton)

- Ni ~ 30,000
- Co ~ 45,000
- ReOx 40,000
- Lithium carbonate 20,000
- Lead 2000
- Magnesium 2500
- Manganese 2500