Hydrogen Storage (I)

The key to an efficient energy storage

Why Hydrogen?

- High gravimetric energy density
- Clean
- Abundant, the most numerous element in the universe!
- Therefore affordable, once made

Why Hydrogen Storage?

What are the problems?

- Mediocre volumetric energy density
- Do we have a hydrogen mine?
- Gaseous under most circumstances

Typical H Storage Means

- High pressure
- Cryogenic
- Chemical Hydrides
- Metal Hydrides
- Physical Sorption

Basic H Storage Requirements

- H mass percentage (~ 6%-wt at least)
- Volumetric density (~0.15 kg/liter at least)
- Low cost
- Ease of recharge or regeneration
- Fast release, fast recharge
- Environmentally sound

High Pressure H Storage

- 3000, 5000, 7000 psi, maybe up to 10000
- Gravimetric density up to 3%-wt H
- Volumetric density ~ 0.06 kg/liter
- Cost high for bottles > 7000 psi
- Environmentally sound
- But how about safety? it's like a bomb!
- Relative ease of refueling though taking time
- Composite construction with metal liner

High Pressure H Storage

Construction

64.9 kg composite usage in the 1st hybrid vessel vs. 76.0 kg in the baseline tank (FW alone)

- The end-user H₂ storage system weight efficiency = 1.67 kWh/kg vs. 1.50 kWh/kg in the system with the baseline tank
- The end-user H2 storage system cost efficiency:

•<u>\$11/lb CF</u> Baseline \$23.45 Fully Integrated \$21.91

Fully Separate \$21.75

• \$6/lb CF Baseline \$18.74 Fully Integrated \$17.79

Fully Separate \$17.63

Approach: Advanced Fiber Placement-Boeing

- Advanced Fiber Placement: A CNC process that adds multiple strips of composite material on demand.
 - Maximum weight efficiency places material where needed
 - Fiber steering allows greater design flexibility
 - Process is scalable to hydrogen storage tanks
 - Optimize plies on the dome sections with minimal limitation on fiber angle
 - Reinforce dome without adding weight to cylinder

Strength

Tank preparation and validation test

Representative smallest polar opening that the AFP process can currently make

The localized reinforcement protected the dome regions very well

- Static Burst Result: 23420 PSI > 22804 PSI, EN standard (New European Standard superseding EIHP)
- 64.9 kg composite usage in the 1st hybrid vessel vs. 76 kg in the baseline tank (FW alone)

11.1 kg (14.6%) Savings!

Cryogenic H Storage

- -252.87°C!
- Very energy consuming to cool
- Energy consuming to maintain
- Gravimetric density up to 8~9%
- Volumetric density ~ 0.08 kg/liter
- Cost high
- Environmentally sound and safe
- Relative ease of refueling
- Vacuum Dewar

Relevance: High density cryogenic hydrogen enables compact, lightweight, and cost effective storage

Cost effective: Cryogenic vessels use 2-4x less carbon fiber, reducing costs sharply at higher capacity

Hydrogen annual merit review, LLNL, June 8, 2010, p. 3 Cryogenic Hz fill line

□ Compact: 235 L system holds151 L fuel (10.3-10.7 kg H₂)

498 Energy Storage

Relevance: Cryogenic pressure vessels can exceed 2015 H2 storage targets and approach ultimate

gravimetric energy density (H₂ Weight %)

Approach: reduce/eliminate H₂ venting losses by researching vacuum stability, insulation, and para-ortho conversion

- ☐ Determine para-ortho effect on pressurization and venting losses
- ☐ Directly measure para-ortho populations
- ☐ Determine vessel heat transfer mechanism (radiation vs. conduction)
- ☐ Evaluate vacuum stability by measuring pressure vessel outgassing
- Test ultra thin insulation for improved vessel volume performance
- ☐ Improve vessel design based on NPREPAGE imental results

Hydrogen has two nuclear spin states: para-H₂ (stable at 20 K) and ortho-H₂

Hydrogen annual merit review, LLNL, June 8, 2010, p. 6

Para-ortho conversion absorbs energy & increases dormancy (equivalent to a second evaporation)

Chemical Hydrides

- Examples: NH3, N2H4, B2H6, NaBH4...
- Gravimetric density up to 20%-wt (LiBH4)
- Volumetric density up to 0.2 kg/liter
- Many are safe and sound, but not always
- Cost high except NH3 and hydrocarbons
- Regeneration has been problematic
- Utilization is less straight forwards than H2.

Chemical Hydrides: Examples

- Hydrocarbons: CH4, C2H6... (complicated reforming > H2, dirty byproducts)
- NH3 (Ammonia) N2H4 (hydrazine) (toxic and ... it stinks)
- B2H6 (diborane) (highly toxic)
- Borohydrides (LiBH4, NaBH4...) (relatively safe)
- Alanates (NaAlH4...) (highly reactive)

Chemical Hydrides: Borohydrides

- LiBH4, very high H content, but not soluble
- NaBH4, 12%-wt H dry
- NaBH4, can be made to 30% H2O solution
- NaBH4, 6%-wt H in 35% H2O stabilized with ammonium hydroxide
- Safe, low toxicity
- Still a challenge in regeneration

2009 Progress & Accomplishments

Status at 2009 AMR Review

2010 Progress & Accomplishments

Open symbols denote new materials since 2009 AMR

