

Energy Storage in Vehicular Applications

By Louis Chapdelaine

Motivation

- Increasing cost of gasoline and diesel
- Possible future shortage of gasoline and diesel fuel supply
- Carbon dioxide release and global climate change
- Other pollutants that abound in oil
- Heavy dependence in US on imports of foreign oil
- Economic gain to using domestic energy storage options

Energy Storage Options

- Gasoline / Diesel
- Natural Gas
- Batteries
- Hydrogen Fuel Cells
- Kinetic Flywheel
- Photovoltaic Cells

Gasoline / Diesel

- Specific Energy = 46 MJ/kg
- Specific Power = HIGH
- Currently the leader in energy storage in ground vehicles
- Trend is to use other storage options which have lower emissions and are still economical
- Can be hybridized with other storage methods

Natural Gas

- Specific Energy = 46 MJ/kg
- Specific Power = HIGH
- ▶ \$2-3 per gallon gasoline equivalent
- Can be easily incorporated into current engine designs, even hybrid engines
- Has fewer net emissions than gasoline
- Has huge potential as a bridge to a 100% emission-free economy
- http://www.economist.com/blogs/babbage/201 2/05/natural-gas
- http://www.ehow.com/video_6378687_convertvehicle-natural-gas.html

Batteries

Lead-Acid

- Specific Energy = 100 kJ/kg
- Specific Power = LOW Nickel-Metal Hydride
- Specific Energy = 288 kJ/kg
- Specific Power = MED Lithium-Ion
- Specific Energy = 720 kJ/kg
- Specific Power = MED

Batteries - cont.

- Lithium-Ion batteries are the most promising
- Relatively low specific energy and power makes them non-ideal for vehicular application
- High refilling time and short range
- Have some potential for either hybrid systems that use other energy storage methods, or in public transportation

Hydrogen Fuel Cells

Hydrogen Gas Layers (oxygen)
Flow Field

Oxygen Flow Field

Oxygen Flow Field

Oxygen Flow Field

Cathode PEM

4

- Specific Energy = 123 MJ/kg
- Specific Power = HIGH
- Has great potential as an emission free energy carrier
- Can be refueled just like natural gas or gasoline
- Currently too expensive to compete
- Possibly the most viable future energy storage system for vehicles
- http://www.youtube.com/watch?v=wS_It55oOFk

Kinetic Flywheel

- Image courtesy of Fybrid Systems LLP
- Specific Energy = 400 kJ/kg
- Specific Power = MED
- Stores energy as rotational kinetic energy
- Rotational momentum associated with flywheel can be problematic in vehicles, need to counteract gyroscopic effect with a second
- Can recapture most energy from braking
- Best used for larger vehicle applications, such as buses or trains
- http://www.youtube.com/watch?v=-knIZj-Z0Zs

Photovoltaic Cells

- Not storage, but rather an on-board source
- There has already been a significant amount of development in this area, but no vehicle is commercially available for use in the US
- Depends largely on the research into the manufacturing of cheaper, more efficient photovoltaic cells
- Currently unable to sustain large distances, long recharging period, requires batteries
- http://www.youtube.com/watch?v=wESgc-ndYEY

Summary

- Gasoline: hopefully a source we do not depend on, currently has largest use
- Natural Gas: good for public transportation, great bridge toward emission free storages
- Batteries: non-ideal for vehicular applications
- Hydrogen Fuel Cells: probably the best future solution for vehicular energy storage
- Kinetic Flywheels: ideal for public transportation and short-range vehicles
- Photovoltaic Cells: possible option in the extended future for short-range vehicles

References

- Ballon, Massie Santos (14 October 2008). "Electrovaya, Tata Motors to make electric Indica". cleantech.com. Cleantech Group. Retrieved 9 December 2012
- Joshua Pearce, "Photovoltaics A Path to Sustainable Futures", Futures 34(7), 663-674, 2002.
- R. E. Graham, "Fuel cells for Transportation," Fuel Cells, 2000.
- "Wonderfuel: Welcome to the age of unconventional gas" by Helen Knight, New Scientist, 12 June 2010, pp. 44-7.
- http://www.itpower.co.uk/investire/pdfs/flywheelrep.pdf
- http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf